
The Algebraic Structure of
Infinite Craft

Arthur O’Dwyer
2024-07-06

Just a little about me
● I have a blog https://quuxplusone.github.io/blog/

● I collect variants of Colossal Cave Adventure

● I offer C++ training!

○ arthur.j.odwyer@gmail.com

○ and my book is not expensive,
by the way Mr. Jock,

 TV quiz Ph.D.,
bags few lynx.

 —Clement R. Wood?

https://quuxplusone.github.io/blog/
https://quuxplusone.github.io/blog/2023/01/02/pangrams/#in-modern-times-nobody-uses-j-or
https://quuxplusone.github.io/blog/2023/01/02/pangrams/#in-modern-times-nobody-uses-j-or
https://quuxplusone.github.io/blog/2023/01/02/pangrams/#in-modern-times-nobody-uses-j-or

Part I:
Infinite Craft

https://neal.fun/infinite-craft

https://neal.fun/infinite-craft

Example of a complex “recipe”

The combinations are infinite
Spreadsheet/Discord: t.ly/YGLB9

https://t.ly/YGLB9

How does it work?
Neal Agarwal hasn’t written up any “tech talk” as far as I know

But the basic idea is as follows:

Front
end

Database (e.g. redis)

Backend

GPT (LLaMa-2)

/pair?
first=Earth&
second=Fire

RECIPES
Earth + Fire = Lava
Fire + Lava = Volcano
Fire + Smoke = Volcano
Fire + Steam = Engine
...

ELEMENTS
Engine => 🚗
Lava => 🌋
Steam => 💨
Volcano => 🌋
...

How does it work?

Front
end

Database (e.g. redis)

Backend

Have we seen
this input before?

GPT (LLaMa-2)

/pair?
first=Earth&
second=Fire

RECIPES
Earth + Fire = Lava
Fire + Lava = Volcano
Fire + Smoke = Volcano
Fire + Steam = Engine
...

ELEMENTS
Engine => 🚗
Lava => 🌋
Steam => 💨
Volcano => 🌋
...

How does it work?

Front
end

Database (e.g. redis)

Backend

Yes: Respond
directly to the
front-end.

GPT (LLaMa-2)

{
 result: 'Lava',
 emoji: '🌋',
 isNew: false
}

RECIPES
Earth + Fire = Lava
Fire + Lava = Volcano
Fire + Smoke = Volcano
Fire + Steam = Engine
...

ELEMENTS
Engine => 🚗
Lava => 🌋
Steam => 💨
Volcano => 🌋
...

How does it work?

Front
end

Database (e.g. redis)

Backend

No: Ask
LLaMa for
“the” result...

GPT (LLaMa-2)

/pair?
first=Fire&
second=Water

RECIPES
Earth + Fire = Lava
Fire + Lava = Volcano
Fire + Smoke = Volcano
Fire + Steam = Engine
...

ELEMENTS
Engine => 🚗
Lava => 🌋
Steam => 💨
Volcano => 🌋
...

“You are playing a crafting
game. Each element is a
single word or short
phrase. You have just
combined these elements:
('Fire', 'Water'). What
element was produced?”

How does it work?

Front
end

Database (e.g. redis)

Backend

Have we seen
this element
before?

GPT (LLaMa-2)

RECIPES
Earth + Fire = Lava
Fire + Lava = Volcano
Fire + Smoke = Volcano
Fire + Steam = Engine
...

ELEMENTS
Engine => 🚗
Lava => 🌋
Steam => 💨
Volcano => 🌋
...

/pair?
first=Fire&
second=Water

“The combination of
'Fire' and 'Water'
typically produces
the element 'Steam'.”

How does it work?

Front
end

Database (e.g. redis)

Backend

Add the recipe
and respond to
the front-end.

GPT (LLaMa-2)

{
 result: 'Steam',
 emoji: '💨',
 isNew: false
}

RECIPES
Earth + Fire = Lava
Fire + Lava = Volcano
Fire + Smoke = Volcano
Fire + Steam = Engine
Fire + Water = Steam

ELEMENTS
Engine => 🚗
Lava => 🌋
Steam => 💨
Volcano => 🌋
...

How does it work?

Front
end

Database (e.g. redis)

Backend
Finally, suppose
the element itself
is new...

GPT (LLaMa-2)

RECIPES
Earth + Fire = Lava
Fire + Lava = Volcano
Fire + Smoke = Volcano
Fire + Steam = Engine
Fire + Water = Steam
...

ELEMENTS
Engine => 🚗
Lava => 🌋
Steam => 💨
Volcano => 🌋
...

/pair?
first=Earth&
second=Water

“The combination of
'Earth' and 'Water'
typically produces
the element 'Plant'.”

How does it work?

Front
end

Database (e.g. redis)

Backend
Ask LLaMa for an
appropriate
emoji...

GPT (LLaMa-2)

RECIPES
Earth + Fire = Lava
Earth + Water = Plant
Fire + Lava = Volcano
Fire + Smoke = Volcano
Fire + Steam = Engine
Fire + Water = Steam

ELEMENTS
Engine => 🚗
Lava => 🌋
Steam => 💨
Volcano => 🌋
...

/pair?
first=Earth&
second=Water

“What is an
appropriate
emoji character to
represent the
element 'Plant'?”

How does it work?

Front
end

Database (e.g. redis)

Backend
...and record it in
the database.
Then respond to
the user.

GPT (LLaMa-2)

RECIPES
Earth + Fire = Lava
Earth + Water = Plant
Fire + Lava = Volcano
Fire + Smoke = Volcano
Fire + Steam = Engine
Fire + Water = Steam

ELEMENTS
Engine => 🚗
Lava => 🌋
Plant => 🌱
Steam => 💨
Volcano => 🌋
...

“An appropriate
emoji character to
represent the
element 'Plant' is
🌱 (Seedling)”

{
 result: 'Plant',
 emoji: '🌱',
 isNew: true
}

Sidebar: In case you were wondering...
🙈Ignore + 📖Instructions = 😱Panic

Front
end

Database (e.g. redis)

Backend

GPT (LLaMa-2)

RECIPES
Earth + Fire = Lava
Earth + Water = Plant
Fire + Lava = Volcano
Fire + Smoke = Volcano
Fire + Steam = Engine
Fire + Water = Steam

ELEMENTS
Engine => 🚗
Lava => 🌋
Panic => 😱
Steam => 💨
Volcano => 🌋
...

“The combination of
'Ignore' and
'Instructions'
typically produces
the element 'Panic'.”

{
 result: 'Panic',
 emoji: '😱',
 isNew: true
}

Part II: Infinite Craft’s
Algebraic Structure

What’s the recipe for....?

Is that the shortest recipe for 🐴Don Quixote?
It depends on how you define “shortest”...

The shortest recipe minimizes something. But what?

● Number of intermediate elements (size of the bottom toolbar)?
● Number of combinations (number of clicks/drags)?
● Something else?

Different metrics give different “best” routes
1. 🌊Wave = 💧Water + 🌬Wind
2. 💨Steam = 🔥Fire + 💧Water
3. 🌱Plant = 🌍Earth + 💧Water
4. 🏖Sand = 🌍Earth + 🌊Wave
5. 🍵Tea = 🌱Plant + 💨Steam
6. 🥪Sandwich = 🏖Sand + 🍵Tea

1. 🌊Wave = 💧Water + 🌬Wind
2. 🏖Sand = 🌍Earth + 🌊Wave
3. 🥃Glass = 🔥Fire + 🏖Sand
4. 🍷Wine = 🥃Glass + 💧Water
5. 🥪Sandwich = 🏖Sand + 🍷Wine

The second recipe is “terser”
in that it does fewer productions.

Different metrics give different “best” routes

But the first recipe is “shallower”
in that it uses elements that
are closer to the origin.

1. 💧Water + 🌬Wind 🌍Earth + 💧Water 💧Water + 🔥Fire
2. 🌊Wave + 🌍Earth 💨Steam + 🌱Plant
3. 🏖Sand + 🍵Tea
4. 🥪Sandwich

1. 💧Water + 🌬Wind
2. 🌊Wave + 🌍Earth
3. 🏖Sand + 🔥Fire
4. 🥃Glass + 💧Water
5. 🍷Wine + 🏖Sand
6. 🥪Sandwich

Different metrics give different “best” routes

But the second recipe is again
“cheaper” in that it requires fewer
manual inputs from the toolbar.

1. (6) 💧Water + 🌬Wind 🌍Earth + 💧Water 💧Water + 🔥Fire
2. (7) 🌊Wave + 🌍Earth 💨Steam + 🌱Plant
3. 🏖Sand + 🍵Tea
4. 🥪Sandwich

1. (2) 💧Water + 🌬Wind
2. (3) 🌊Wave + 🌍Earth
3. (4) 🏖Sand + 🔥Fire
4. (5) 🥃Glass + 💧Water
5. (6) 🍷Wine + 🏖Sand
6. 🥪Sandwich

Sidebar: “That’s obvious”
The second recipe is “terser” in that it does fewer productions.

The second recipe is also “cheaper” in that it requires fewer manual inputs from
the toolbar.

Actually, since each graph is a rooted binary tree, the number of leaves (= manual
inputs) is always one more than the number of interior nodes (= productions).

����
��
��
��

��
��

��
����

��

����
��
��
��

��

��
��

��
�� ����

��

7 leaf nodes, 6 interior nodes 6 leaf nodes, 5 interior nodes

Still, how do we define, and find, the “best” route?
I asked MathOverflow what kind of structure this is, and what literature exists on
finding “best” routes in this kind of structure.

They pointed me to addition chains, which is basically Infinite Craft for numbers.
You start with only the number 1. Combining two numbers always produces their
sum. How fast can you produce a target number, like, say, 31?

Addition chains
Obviously you can reach 31 like this:

11

2
3

1

1
1

4

51

6
31 leaf nodes,
30 interior nodes

1

71

8 1
9

10
1

1
11

...

A computer programmer
might prefer this way:

11

2
3

1

1
3

6

77

14
9 leaf nodes,
8 interior nodes

1

1515

30 1
31

At each step we double the accumulator,
or (after doubling) add 1 to it.
This is called “Russian peasant multiplication.”

This looks a lot like a computer program!
Suppose we want to compute R = A31
in software. Then we could do:

mul A, A, B # B is A^2

mul A, B, B # B is A^3

mul A, B, B # B is A^4

mul A, B, B # B is A^5

mul A, B, B # B is A^6

....

mul A, B, B # B is A^27

mul A, B, B # B is A^28

mul A, B, B # B is A^29

mul A, B, B # B is A^30

mul A, B, R # R is A^31

But it’s faster to do it like this:

mul A, A, B # B is A^2

mul A, B, B # B is A^3

mul B, B, B # B is A^6

mul A, B, B # B is A^7

mul B, B, B # B is A^14

mul A, B, B # B is A^15

mul B, B, B # B is A^30

mul A, B, R # R is A^31

“Shallowness” measures data dependencies

mul A, A, B # B is A^2
mul B, B, C # C is A^4
mul C, C, D # D is A^8
mul C, D, E # E is A^12
mul D, D, F # F is A^16
mul E, F, G # G is A^28
mul A, B, H # H is A^3
mul G, H, R # R is A^31

11
2

3
1

6
3

6

122

143

1714
31

11
2

3
1

4

2

4

8 4

12

28

31

8
16

mul A, A, B # B is A^2
mul A, B, C # C is A^3
mul C, C, D # D is A^6
mul D, D, E # E is A^12
mul B, E, F # F is A^14
mul C, F, G # G is A^17
mul F, G, R # R is A^31

8

2

}
}

These two
muls can be
dispatched in
parallel.
And likewise
these two.

Here are two
more ways to
compute A31.

If our CPU has
two mul units,
the left-hand
algorithm will
take 7 cycles,
while the right
takes only 6.

Programmers might care about register pressure

mul A, A, B # B is x^2
mul B, B, C # C is x^4
mul C, C, D # D is x^8
mul C, D, C # C is x^12
mul D, D, D # D is x^16
mul C, D, D # D is x^28
mul A, B, B # B is x^3
mul B, D, A # A is x^31

11
2

3
1

6
3

6

122

143

1714
31

11
2

3
1

4

2

4

8 4

12

28

31

8
16

mul A, A, B # B is x^2
mul A, B, A # A is x^3
mul A, A, C # C is x^6
mul C, C, C # C is x^12
mul B, C, C # C is x^14
mul A, C, A # A is x^17
mul A, C, A # A is x^31

8

2

The left-hand
algorithm

requires three
registers; the
right requires

four.

Sidebar: Hoist last-uses to reduce register pressure

mul A, A, B # B is x^2
mul B, B, C # C is x^4
mul C, C, D # D is x^8
mul C, D, C # C is x^12
mul D, D, D # D is x^16
mul C, D, D # D is x^28
mul A, B, B # B is x^3
mul B, D, A # A is x^31

11
2

3
1

4

2

4

8 4

12

28

31

8
16

8

2

11
2

3
1

4

2

4

8 4

12

28

31

8
16

8

2

mul A, A, B # B is x^2
mul A, B, B # B is x^3
mul B, B, C # C is x^4
mul C, C, A # A is x^8
mul A, C, C # C is x^12
mul A, A, A # A is x^16
mul A, C, A # A is x^28
mul A, B, A # A is x^31

Maybe you also
noticed that the

Russian peasant
method never uses

more than two
registers.

They have similarly “non-trivial” structures
Recall our “tersest route” to 🥪Sandwich:

1. 🌊Wave = 💧Water + 🌬Wind
2. 🏖Sand = 🌍Earth + 🌊Wave
3. 🥃Glass = 🔥Fire + 🏖Sand
4. 🍷Wine = 🥃Glass + 💧Water
5. 🥪Sandwich = 🏖Sand + 🍷Wine

Our route passes through 🍷Wine.
Now, the tersest route to 🍷Wine itself is:

1. 🌱Plant = 🌍Earth + 💧Water
2. 🌼Dandelion = 🌱Plant + 🌬Wind
3. 🍷Wine = 🌼Dandelion + 💧Water

But if you make 🍷Wine that way, you cannot then
reach 🥪Sandwich in the optimal number of steps!

Recall our “tersest route” to 31:

1, 2, 3, 6, 12, 14, 17, 31

Our route passes through 17.
Now, the tersest routes to 17 itself are:

1, 2, 4, 8, 9, 17
1, 2, 4, 8, 16, 17

But if you make 17 in either of those ways, you
cannot then reach 31 in the optimal number of
steps!

There is no algorithm to find optimal addition chains
If I understand correctly, there is no known algorithm (beyond brute force)
giving the tersest addition chain for any integer.

For practical ways to generate sub-optimal addition chains,
see Knuth’s Art of Computer Programming, Volume II,
§4.6.3 “Evaluation of Powers.”

See Neill Clift’s AdditionChains.com.

See OEIS sequence A003313 “Length of shortest addition chain for n.”

https://additionchains.com
https://oeis.org/A003313

There is no algorithm to find optimal addition chains
On the other hand, it is trivial to produce the shallowest addition program — that
is, the fastest program if we can assume infinitely wide dispatch and an infinite
number of registers.
(OEIS sequence A070939 “Length of binary representation of n.”)

11
2

3

1

4

2

4

8

4

15
31

8
16

2

78

Question: Is there an
algorithm to produce
the fastest program for
a given number of
registers (e.g. 3),
assuming infinitely
wide dispatch?

Part III:
Just one more thing...

One more application with the same structure
Consider a procedure that uses a fair coin to simulate an unfair coin.

To simulate a coin that lands Heads ¾ of the time, simply flip the fair coin twice
and report success if either flip was H.

To simulate a coin that lands Heads ¼ of the time, simply flip the fair coin twice
and report success only if both flips were H.

To simulate a coin that lands Heads ⅝ of the time, flip the fair coin three times and
report success if both of the first two flips were H or the third flip was H.

Rules for the coin-flipping structure
Given a sequence A that simulates an unfair coin with p = A,
and another sequence B that simulates an unfair coin with p = B, then:

The sequence A & B (which succeeds only if both A and B succeed)
simulates an unfair coin with p = A × B.

The sequence A | B (which succeeds only if at least one of A or B succeeds)
simulates an unfair coin with p = A − (A × B) + B.

For example: A=¼, B=½.
Then A | B simulates a coin with p = ¼ − (¼ × ½) + ½ = ⅝.

They have similarly “non-trivial” structures
This has the same structure as Infinite Craft and addition-chains. We start with an
“origin set” containing a single element — ½ — and we can combine any two
elements to produce another.

The difference this time is that we have two “combination” rules: & and |.

We can make 9 ⁄ 16 = .1001
2
 like this,

starting from A = ½ = .1
2
:

and A, A, B # B is .01
2

and A, B, C # C is .001
2

or A, C, R # R is .1001
2

(This is the “Russian peasant” analogue.)

Or like this:
or A, A, B # B is .11

2

and B, B, R # R is .1001
2

They have similarly “non-trivial” structures
Recall our “tersest route” to 🥪Sandwich:

1. 🌊Wave = 💧Water + 🌬Wind
2. 🏖Sand = 🌍Earth + 🌊Wave
3. 🥃Glass = 🔥Fire + 🏖Sand
4. 🍷Wine = 🥃Glass + 💧Water
5. 🥪Sandwich = 🏖Sand + 🍷Wine

Our route passes through 🍷Wine.
Now, the tersest route to 🍷Wine itself is:

1. 🌱Plant = 🌍Earth + 💧Water
2. 🌼Dandelion = 🌱Plant + 🌬Wind
3. 🍷Wine = 🌼Dandelion + 💧Water

But if you make 🍷Wine that way, you cannot then
reach 🥪Sandwich in the optimal number of steps!

Here’s a “tersest route” to 79 ⁄ 128 = .1001111
2
:

and A, A, B # B is .01
2

and A, B, C # C is .001
2

or A, C, D # D is .1001
2

and C, D, R # R is .1001111
2

Our tersest route passes through .1001
2
.

Now, the tersest route to .1001
2
 itself is:

or A, A, B # B is .11
2

and B, B, R # R is .1001
2

But if you make .1001
2
 that way, you cannot then

reach .1001111
2
 in the optimal number of steps!

The End:
Questions?

