The Algebraic Structure of
Infinite Craft

Arthur O'Dwyer
2024-07-06

Just a little about me

e |have ablog https://quuxplusone.github.io/blog/

e | collect variants of Colossal Cave Adventure /@

e | offer C++ training! TN / \
name lookup ‘ 3850 ‘ 4950

s I oy o el open rnees / \ / \

T \ 3750 / \

e the C++17 STL \/_,_:-;\:\ 5600 ;;0>|\ 5488 f“

| 2800 \ /é? /

o arthur.j.odwyer@gmail.com Ny A \‘/, 8 \ A,_,.,.//
\\2645 /} 2380
o and my book is not expensive, g W

’ P Mr. Jock,

by the way _
TV quiz Ph.D.,

bags few lynx.
—Clement R. Wood?

https://quuxplusone.github.io/blog/
https://quuxplusone.github.io/blog/2023/01/02/pangrams/#in-modern-times-nobody-uses-j-or
https://quuxplusone.github.io/blog/2023/01/02/pangrams/#in-modern-times-nobody-uses-j-or
https://quuxplusone.github.io/blog/2023/01/02/pangrams/#in-modern-times-nobody-uses-j-or

Part |:
Infinite Craft

https://neal.fun/infinite-craft

NEAL.FUN nfinite NEAL.FUN Infinite
Craft Craft
% Fire
() Water
R © E<|’) Reset @ c(]))
Wat A F Wind | | © Earth 0 Wat % Fi Wind | | © Earth

NEAL.FUN [nfinite
Craft
.~ Steam
R C P
Wat % Fi Wind | | © Earth

https://neal.fun/infinite-craft

NEAL.FUN Infinite
Craft
(f‘: Fire _ Steam
&8 Engine
Reset @, E(]D
O Water | | & Fire Wind | | © Earth
Steam & Engine

NEAL.FUN Infinite
Craft
& Fire & Fire
44 Volcano
Reset C P
O Water | | & Fire Wind | | © Earth
Steam & Engine 4 Volcano

NEAL.FUN

Reset

O Water

Steam

[nfinite
C‘raf‘t

Wind 4a Volcano

45 Eruption
C© ¢
&) Fire Wind | @ Earth
& Engine 4 Volcano 4 Erupt

[nfinite

NEAL.FUN
Craft

_ Steam 44 Eruption

4a Geyser

Reset

O Water | = & Fire Wind | © Earth

Steam & Engine 4» Volcano 4 Erupt

4a Geyser

Example of a complex “recipe”

% Engine \ Windmill
_ Steam (¢} Fire

{ Water Wind . Paper £ Don Quixote

@ Earth

-7 Plant) @ Tree ¥ Book

7. Tsunami % Surf

The combinations are infinite

Steam
Spreadsheet/Discord: t.1ly/YGLB9 & Engine ok
8448 Seal + Log = Club
8449 Bahasa + English = Bahasa Inggris & Swamp & Stone
8450 | Indonesia + Revolution = Indonesian Revolution
8451 Bahasa Inggris + Indonesian Revolution = |Bahasa Indonesia ~” Plant
8617 Bahasa Indonesia + Bali = Bahasa Bali
8618 Bahasa Bali + Aksara = Aksara Bali \ /
8619 ' Bahasa Indonesia + Coffee = Kopi
8620 | Kopi + Aksara Bali = Kopi Aksara «f Pollen A Volcano
8621 Khmer Word + Kopi Aksara = |Khmer Unicode
9000 Khmer Language + Sanskrit = Khmer Script
9001 | |raq + Ancient = Babylon =
9002 | Babylon + Ancient = Sumer 7(&‘ h Neal Agarwal
9003 Sumer + Language = Cuneiform =
28981 Cuneiform *+ |Khmer Unicode = [Unicode | someone managed to craft Peter Griffin one minute after launch
9309 Unicode + Uranus = |U+2642 | 824.8K
9315 | Ra + Unicode = |
9316 Ra + Eagle = Horus
9317 | U+2642 + Horus = Eye of Horus g Neal Agarwal
9318 | U+2642 + Egypt = Ankh 2
9319 | o> + i =
9320 :ibek 5 S;?:Zg!e = g:km 200,000 unique combinations tried so far! But still no one has crafted
9325 | U+2642 + Cobra = Snake Eyes Shake Shack
9326 | U+2642 + Cuneiform = %

https://t.ly/YGLB9

How does it work?

Neal Agarwal hasn'’t written up any “tech talk” as far as | know

But the basic idea is as follows:

Front
end

“>—Earth
& Fire

/pair?
first=Earth&
second=Fire

Backend

Database (e.g. redis)

RECIPES ELEMENTS

Earth + Fire = Lava Engine =>
Fire + Lava = Volcano Lava =>
Fire + Smoke = Volcano Steam =>
Fire + Steam = Engine Volcano =>

GPT (LLaMa-2)

e

How does it work?

Front
end

“>—Earth
& Fire

/pair?
first=Earth&
second=Fire

Backend (Iﬁ

Have we seen
this input before?

Database (e.g. redis)

RECIPES ELEMENTS
Earth + Fire = Lava Engine => &&
Fire + Lava = Volcano Lava = X
Fire + Smoke = Volcano Steam => =
Fire + Steam = Engine Volcano => &

GPT (LLaMa-2)

How does it work?

Database (e.g. redis)

RECIPES ELEMENTS

Earth + Fire Lava Engine => &&
Volcano Lava = &

Fire + Lava
Front Fire + Smoke Volcano Steam => =
BaCkend Fire + Steam = Engine Volcano => &
end <

Yes: Respond

directly to the
result: 'Lava', front-end.

enoji: ‘&, GPT (LLaMa-2)

isNew: false

4a Lava {

}

How does it work?

Front
end

% Fire
() Water

/pair?
first=Fire&

second=Water

Backend !?

No: Ask
LLaMa for

“the” result...
Y o (LLaMa-2)

“You are playing a crafting
game. Each element is a
single word or short
phrase. You have just
combined these elements:
('Fire', 'Water'). What
element was produced?”

Database (e.g. redis)

RECIPES ELEMENTS
Earth + Fire = Lava Engine => &&
Fire + Lava = Volcano Lava => X
Fire + Smoke = Volcano Steam => =
Fire + Steam = Engine Volcano => &

How does it work?

Front
end

% Fire
() Water

/pair?
first=Fire&
second=Water

Backend (Iﬁ

Have we seen
this element

before?

& GPT (LLaMa-2)

“The combination of
'Fire' and 'Water'
typically produces
the element 'Steam'.”

Database (e.g. redis)

RECIPES ELEMENTS

Earth + Fire = Lava Engine =>
Fire + Lava = Volcano Lava =>
Fire + Smoke = Volcano Steam =>
Fire + Steam = Engine Volcano =>

b DD

How does it work?

Database (e.g. redis)

RECIPES ELEMENTS
Earth + Fire = Lava Engine => &&
Fire + Lava = Volcano Lava = B
Front Fire + Smoke = Volcano Steam => =
BaCkend Fire + Steam = Engine Volcano => &
end < Fire + Water = Steam

Add the recipe

and respond to
result: 'Steam’, || the front-end.

enofi: &, GPT (LLaMa-2)

isNew: false

Steam
: {

}

How does it work?

Database (e.g. redis)

RECIPES ELEMENTS
Earth + Fire = Lava Engine => =
Fire + Lava = Volcano Lava = &
Front Fire + Smoke = Volcano Steam => =
BaCkend Fire + Steam = Engine Volcano => &
end . Fire + Water = Steam
Finally, suppose
| ©@_Earth the element itself
O Water /pair? is new...
first=Earth&
second=Water GPT (LLaMa_Z)

“The combination of
'Earth’ and 'Water'
typically produces
the element 'Plant’'.”

How does it work?

Front
end

’ 6 Farth

() Water

/pair?
first=Earth&
second=Water

Backend !?

Ask LLaMa for an
appropriate
emaiji...

“What is an
appropriate

emoji character to
represent the
element 'Plant'?”

Database (e.g. redis)

RECIPES

Earth + Fire

Earth + Water

Fire
Fire
Fire
Fire

+
+
+
+

Lava

Smoke
Steam
Water

Lava
Plant
Volcano
Volcano
Engine
Steam

ELEMENTS
Engine => &&
Lava = B
Steam => =

Volcano => Z

. (LLaMa-2

)

How does it work?

Database (e.g. redis)
RECIPES ELEMENTS
Earth + Fire = Lava Engine => =
Earth + Water = Plant Lava = &
Front Fire + Lava = Volcano Plant =>
BaCkend Fire + Smoke = Volcano Steam => &
end . Fire + Steam = Engine Volcano => &
...and record it in Fire + Water = Steam
the database.
Plant
{ Then respond to
H First Discovery . .
result: 'Plant’',| | the user. %
cuede- ’ GPT (LLaMa-2)
isNew: true

“An appropriate
emoji character to
represent the
element 'Plant' is
(Seedling)”

Sidebar: In case you were wondering...

#4lgnore + [_lInstructions = (Panic

Database (e.g. redis)

RECIPES ELEMENTS
Earth + Fire = Lava Engine => &&
Earth + Water = Plant Lava = B
Front Fire + Lava = Volcano Panic => G
BaCkend Fire + Smoke = Volcano Steam => %
end Fire + Steam = Engine Volcano => &
Fire + Water = Steam

{

result: 'Panic’, i;f:::::7
enoji: @, GPT (LLaMa-2)

isNew: true

}

“The combination of
'Ignore' and
'Instructions’
typically produces
the element 'Panic'.”

Part Il: Infinite Craft's
Algebraic Structure

What's the recipe for....7

% Engine \ Windmill
_ Steam (¢} Fire

() Water Wind

& Don Quixote

@ Earth

-7 Plant) @ Tree ¥ Book

Is that the shortest recipe for *}Don Quixote?

It depends on how you define “shortest’...
The shortest recipe minimizes something. But what?

e Number of intermediate elements (size of the bottom toolbar)?
e Number of combinations (number of clicks/drags)?
e Something else?

Different metrics give different “best” routes

2B

ok w0~

& Wave = § Water + =+Wind

% .Steam = & Fire + § Water
Plant = {pEarth + § Water

% Sand = {yEarth + & Wave

= Tea = ¥ Plant + = -Steam

«#Sandwich = &2Sand + = Tea

& Wave = § Water + =2Wind

¥ Sand = {yEarth + & Wave

& Glass = @4 Fire + &> Sand

* Wine = &/Glass + () Water
«/Sandwich = &2Sand + ® Wine

The second recipe is “terser”
in that it does fewer productions.

Different metrics give different “best” routes

* Wine + 4 Sand
&7 Sandwich

1. Water + +#Wind C)Earth + § Water § Water + & Fire

2. @& Wave + (pEarth < .Steam + Plant

3. %4 Sand + = Tea

4 &7 Sandwich

1. Water + ++Wind

2. @& Wave + (pEarth But the first recipe is “shallower”
3. % Sand + @Fire in that it uses elements that

4. < Glass + () Water are closer to the origin.

S.

6.

Different metrics give different “best” routes

1. (6) Water + -+Wind CyEarth + & Water § Water + ¢ Fire

2. (7) @& Wave + (pEarth < .Steam + Plant

3. %4 Sand + = Tea

4 &7 Sandwich

1. (2) Water + -»Wind

2. (3) & Wave + {pEarth But the second recipe is again

3. (4) % Sand + @ Fire “cheaper” in that it requires fewer
4. (5) </ Glass + () Water manual inputs from the toolbar.
5. (6) * Wine + 2”Sand

6. &7 Sandwich

Sidebar: “That’s obvious”

The second recipe is “terser” in that it does fewer productions.

The second recipe is also “cheaper” in that it requires fewer manual inputs from
the toolbar.

Actually, since each graph is a rooted binary tree, the number of leaves (= manual
inputs) is always one more than the number of interior nodes (= productions).

7 leaf nodes, 6 interior nodes 6 leaf nodes, 5 interior nodes

Still, how do we define, and find, the “best” route?

| asked MathOverflow what kind of structure this is, and what literature exists on
finding “best” routes in this kind of structure.

They pointed me to addition chains, which is basically Infinite Craft for numbers.
You start with only the number 1. Combining two numbers always produces their
sum. How fast can you produce a target number, like, say, 317

Infinite Infinite

o |

o $
Fjse(© b
(2]

Addition chains

Obviously you can reach 31 like this: A computer programmer

might prefer this way:

31 leaf nodes,
30 interior nodes

9 leaf nodes,
8 interior nodes

At each step we double the accumulator,
or (after doubling) add 1 to it.
This is called “Russian peasant multiplication.”

This looks a lot like a computer program!

Suppose we want to compute R = A3

in software. Then we could do: But it’s faster to do it like this:
mul A, A, B # B is A2 mul A, A, B # B is A2
mul A, B, B # B is A"3 mul A, B, B # B is A"3
mul A, B, B # B is A*4 mul B, B, B # B is A"6
mul A, B, B # B is A"S mul A, B, B # B is A"7
mul A, B, B # B is A”6 mul B, B, B # B is A*14
mul A, B, B # B is A~15
mul A, B, B # B is A*27 mul B, B, B # B is A”30
mul A, B, B # B is A”28 mul A, B, R # R is A”31
mul A, B, B # B is A”"29
mul A, B, B # B is A"30
mul A, B, R # R is A”"31

o
-

“‘Shallowness” measures data dependencies

Here are two
more ways to
compute A3,

four CPU has M1 A, A, B # B is Ar2
mul A, A, B # B is AA2 two mul unite. ML B, B, C # C is A
mul A, B, C # C is A"3 ’ mul C, C, D # D is A"8 These two
mul C, C, D # D is A6 theleft-hand 10 ¢ b E # E is An12) mulscanbe
mul D, D, E # E is Arz2 algorithmwill oy 500 4 F s AA16}d§r‘;ﬂte°|hed "
mul B, E, F # F is Ar14 take7cycles, 1 E F, G # G is Ar28 Zdl.k' |
mul C, F, G # G is Axa7 Whiletheright ny1 A, B, H # H is A3 S jose two.
mul F, G, R # R is A~31 takes only 6. mul G, H, R # R is A~31

-
-

Programmers might care about register pressure

The left-hand
algorithm

: mul A, A, B # B is x~2
mul A, A, B # B is x~2 requires three 5 8" B ¢ # C is x4
mul A, B, A # A is x~3 registers;the 11 ¢ ¢ b #0D is x°8
mul A, A, C # C is x"6 right requires mul C, D, C # C is x*12
mul C, C, C # C is x~12 four. mul D, D, D # D is x 16
mul B, C, C # C is x~14 mul C, D, D # D is xA28
mul A, C, A # A is X717 mul A, B, B # B is x~3
mul A, C, A # A is x~31 mul B, D, A # A is x~31

-
-
-

Sidebar: Hoist last-uses to reduce register pressure

mul A, A, B # B is x~2 mul A, A, B # B is x~2
mul A, B, B # B is x”"3 mul B, B, C # C is x4
mul B, B, C # C is x4 mul C, C, D # D is x"8
mul C, C, A # A is x”8 Maybe you also mul C, D, C # C is x"12
mul A, C, C # C is x~12 noticed that the mul D, D, D # D is x*16
mul A, A, A # A is x~1e Russian peasant mul C, D, D # D is x"28
mul A, C, A # A is x~2g8 Mmethodneveruses .1 A B, B # B is x*3
mul A, B, A # A is xr31 Mmorethantwo mul B, D, A # A is x~31

-
-
-
-

registers.

They have similarly “non-trivial” structures

Recall our “tersest route” to &¢Sandwich:

1. @& Wave = § Water + ~+Wind

2. ¥ Sand = {yEarth + (& Wave

3. & Glass = & Fire + ®Sand

4. <* Wine = &/Glass + () Water

5. «#Sandwich = ©2Sand + ® Wine

Our route passes through ® Wine.
Now, the tersest route to ® Wine itself is:

1. Plant = {pEarth + § Water
2. “:Dandelion = " Plant + »+Wind
3. < Wine = #:Dandelion + § Water

But if you make < Wine that way, you cannot then
reach s#Sandwich in the optimal number of steps!

Recall our “tersest route” to 31:
1,2, 3,6,12, 14, 17, 31

Our route passes through 17.
Now, the tersest routes to 17 itself are:

1,2,4,8, 9, 17
1,2,4,8,16, 17

But if you make 17 in either of those ways, you
cannot then reach 31 in the optimal number of
steps!

There is no algorithm to find optimal addition chains
If | understand correctly, there is no known algorithm (beyond brute force)
giving the tersest addition chain for any integer.

For practical ways to generate sub-optimal addition chains,
see Knuth’s Art of Computer Programming, Volume II,
§4.6.3 “Evaluation of Powers.”

See Neill Clift's AdditionChains.com.
See OEIS sequence A003313 “Length of shortest addition chain for n.”

https://additionchains.com
https://oeis.org/A003313

There is no algorithm to find optimal addition chains

On the other hand, it is trivial to produce the shallowest addition program — that
is, the fastest program if we can assume infinitely wide dispatch and an infinite
number of registers.

(OEIS sequence A070939 “Length of binary representation of n.”)

Question: Is there an
algorithm to produce
the fastest program for
a given number of
registers (e.g. 3),
assuming infinitely
wide dispatch?

Part IlI:
Just one more thing...

One more application with the same structure

Consider a procedure that uses a fair coin to simulate an unfair coin.

To simulate a coin that lands Heads % of the time, simply flip the fair coin twice
and report success if either flip was H.

To simulate a coin that lands Heads 74 of the time, simply flip the fair coin twice
and report success only if both flips were H.

To simulate a coin that lands Heads % of the time, flip the fair coin three times and
report success if both of the first two flips were H or the third flip was H.

Rules for the coin-flipping structure

Given a sequence A that simulates an unfair coin with p = A,
and another sequence B that simulates an unfair coin with p = B, then:

The sequence A & B (which succeeds only if both A and B succeed)
simulates an unfair coin with p = A x B.

The sequence A | B (which succeeds only if at least one of A or B succeeds)
simulates an unfair coin with p =A - (A x B) + B.

For example: A=Y, B="%.
Then A | B simulates a coinwithp = Ya—- (Yax2)+% = %.

They have similarly “non-trivial” structures

This has the same structure as Infinite Craft and addition-chains. We start with an
“origin set” containing a single element — 72 — and we can combine any two
elements to produce another.

The difference this time is that we have two “combination” rules: & and |.

We can make 9/16 = . 1001, like this,

starting fromA="72=.1: Or like this:
and A, A, B # B is .01, or A, A, B #B is .11,
and A, B, C # C is .001, and B, B, R # R is .1001,

or A, C, R # R is .1@01,

(This is the “Russian peasant” analogue.)

They have similarly “non-trivial” structures

Recall our “tersest route” to &¢Sandwich:

& Wave = § Water + ++Wind

% Sand = {yEarth + & Wave

< Glass = & Fire + & Sand

* Wine = & Glass + () Water
&ZSandwich = ©©Sand + * Wine

aRwbd =

Our route passes through ® Wine.
Now, the tersest route to ® Wine itself is:

1. Plant = {pEarth + § Water
2. “:Dandelion = " Plant + »+Wind
3. < Wine = #:Dandelion + § Water

But if you make < Wine that way, you cannot then
reach s#Sandwich in the optimal number of steps!

Here's a “tersest route” to 79/128 = .1001111

and A, A, B # B is .01,

and A, B, C # C is .001,

or A, C, D #0D is .1001,
and C, D, R # R is .1001111,

Our tersest route passes through .1001..
Now, the tersest route to . 1001, itself is:

or A, A, B # B is .11,
and B, B, R # R is .1001,

But if you make .1001, that way, you cannot then
reach .1001111_ in the optimal number of steps!

The End:
Questions?

