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Prologue
Once in conversation at a social gathering, a colleague working in medical

research grumbled about the difficulties of doing research in his field, given
the ever increasing complexity of laboratory techniques and the unman-
ageable amount of scientific literature to be assimilated. Turning toward
me, he added: 'It is so much easier to be a mathematician. If you want
to know whether a theorem is true or not, all that you have to do is to
program your computer and you get the right answer.' Such statements, in
one form or another, are frequently made, and curiously, even in many sci-
entific circles there is the widespread belief that computers can, or at least
will eventually be able to, solve every mathematical problem and dispense
with mathematicians' searching for proofs. Various weaker claims are even
occasionally made within the mathematical community, and together with
certain technical results on probabilistic algorithms, to be discussed below,
have led to misleading journalistic reporting. As to the medical researcher,
he was rather surprised to learn that it had been proven in the early thirties
that no computer program (read: algorithm) can be constructed to check,
in a finite number of steps, whether any given formula of first-order logic is
or is not derivable (provable) in that system. (This is the Church-Turing
Theorem, yielding a negative solution to the general decision problem as
proposed by Hilbert.)

The conversation at the social gathering and recent discussions of the
function of proofs spurred the following musings. Let us fancifully pretend
that the general decision problem did after all have a positive solution, that
every axiomatisable theory was decidable, and that a universal decision al-
gorithm was invented and implemented on oracular computers, marketed
under the trade name of PYTHIAGORA (Pythia + Pythagoras). There she
is, sitting on the desktop of every mathematician. Not only can PYTHI-
AGORA answer all our questions, but she does so at the speed of light,
having no complexes about complexity of computation. Think how won-
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derful it all would be. You want to know whether the Riemann hypothesis
is true or not, just type it in (using some appropriate computer language),
and in a split second, the answer is flashed back on your screen: 'true' or
'false'. And on you could go using the Riemann hypothesis, now turned
into Riemann's ^-theorem by the grace of PYTHIAGORA if she said 'true'.
Fermat's Last Theorem? No more unpalatable stretching of the margin so
that it can contain all the subtleties of elliptic curves, Iwasawa theory, au-
tomorphic forms, deformation theory and what not. No sooner have you
typed in Fermat's problem than the long-awaited answer appears on your
magic screen, without any brain-wracking help from Andrew Wiles! Per-
haps we should not strain PYTHIAGORA with the continuum hypothesis,
unless we let her say a little bit more than 'true' or 'false'. With due ac-
commodations, think of the explosion in mathematical knowledge thanks
to PYTHIAGORA. No more painful refereeing, no more plowing through
incomprehensible, or at best, difficult proofs. After all, if all our toil and
sweat in proving theorems served only to ascertain whether they were true
or not, then PYTHIAGORA would deliver us of useless labours and frustra-
tions. No more 'dirty work'; all our creative energies would be channelled
into brilliant and daring conjecturing. We mathematicians would only have
to produce conjectures, and let PYTHIAGORA weed out the false from the
true. What a paradise! What a boon!

Did I say boon? Nay, I say, no boon but doom! A universal decision
method would have dealt a death blow to mathematics, for we would cease
having ideas and candidates for conjectures. The main thesis to be devel-
oped here is that the essence of mathematics resides in inventing meth-
ods, tools, strategies and concepts for solving problems which happen to
be on the current internal research agenda or suggested by some external
application.1 But conceptual and methodological innovations are inextrica-
bly bound to the search for and the discovery of proofs, thereby establishing
links between theories, systematising knowledge, and spurring further de-
velopments. Proofs, I maintain, are the heart of mathematics, the royal
road to creating analytic tools and catalysing growth. We are, as Bergson
put it, Homo /aber, the makers of tools, be they material or conceptual.
But as tool makers, mathematicians are artists and artisans, guided by
a deep sense of beauty and search for harmony. Before embarking on a
general discussion of these issues, let me present two typical case histories,
one drawn from number theory and the other from set theory. They illus-
trate the intricate role of proofs in generating mathematical knowledge and .
understanding, going way beyond their purely logical-deductive function.

1 The interplay between individuals' creative vision and the sociocultural factors in
the choice of research topics is particularly complex, and will not concern us here.
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Two Case Histories
In a letter to Euler dated June 7, 1742, the number-theorist Christian
Goldbach (1690-1764) conjectured that every even integer greater than 6
is representable as a sum of two distinct odd primes. Euler expressed his
belief in the correctness of Goldbach's conjecture, but wrote that he could
not prove it. E. Waring, in 1770, also arrived at the Goldbach conjecture
and added that every odd integer is either a prime or is a sum of three odd
primes (Dickson [1919], Vol. I, p. 421). So far, the Goldbach conjecture
is still unsettled, notwithstanding the efforts of many outstanding mathe-
maticians. Curiously, whether the Goldbach conjecture turns out to be
correct or not is of no known theoretical or practical importance. Nothing
non-trivial seems to follow from the conjecture, except that for every n
there is a prime p such that n < p < 2n (for if 2n = p\ + p? one of pi lies
between n and 2n). But this result is weaker than Chebychev's theorem
which asserts the existence of a prime p strictly between n and In — 2.
Indeed, it is known that the number of primes between n and 2n is greater
than n/[3 log(2n)].

Another open problem in prime-number theory, with no overt logical re-
lation to the Goldbach conjecture, is the. twin-prime problem: do there exist
infinitely many primes p such that p + 2 is also a prime, such as the pairs
(3;5), (5;7), (11;13), etc. The first breakthrough on the Goldbach problem
yielded also a method to attack the twin-prime problem. In a short note
published by Jean Merlin in the Comptes Rendus de l'Acadimie des Sci-
ences de Paris in 1911 (communicated for publication by Henri Poincare'),
Merlin outlined a sieve method which generalised the sieve of Eratosthenes
(B. 3rc* century B.C.E.). The method was claimed to lead to a proof of
both the twin-prime conjecture and the Goldbach conjecture. Jean Merlin
was killed at the beginning of World War I, and Jacques Hadamard pub-
lished in 1914 a lengthier manuscript found among the papers of Merlin.
The proofs of Merlin turned out to be invalid. Did the matter end here?
Why still talk about it, why call it a breakthrough? After all, Merlin was
neither the first nor the last mathematician who presented an invalid proof
of the Goldbach conjecture! The breakthrough consisted of inventing a new
method, the Merlin sieve method. Though Merlin did not live long enough
to rectify his claims and develop his method, the Norwegian mathemati-
cian Viggor Brun (1885-1978) recognised immediately the potentialities of
Merlin's method, and in a series of papers starting in 1915, perfected the
method and applied it successfully to a host of problems in number theory.
(See Scriba [1980] for a biography of Brun.) The sieve method, as refined by
Brun and appropriately now called 'Brun's sieve', enabled Brun to obtain
inter alia the following results:

(a) There exist infinitely many integers n such that both n and n + 2 have
at most nine prime factors;
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(b) Every sufficiently large even integer is the sum of two numbers each
having at most nine prime factors.

Brun's sieve method has been refined, extended and combined with other
powerful methods in number theory. The literature on sieve methods (plu-
ral!) has grown to such an extent that a lengthy monograph by Halber-
stam and Richert [1974] was dedicated to surveying the state of the art.
Though one still keeps an eye on the Goldbach and twin-prime problems,
the development of sieve methods has become a subject in its own right,
with applications to algebraic number fields, Latin squares, lattice theory,
etc. Here, as normally happens in mathematics, one can say that the Gold-
bach problem acted as a catalyst, an impetus to remarkable developments
due to the search for a proof. The sieve methods are not the only develop-
ments stemming from the Goldbach problem. In 1930 L. Schnirelmann
(1905-1938) achieved another breakthrough on the Goldbach problem by
combining the sieve method with his combinatorial density arguments, a
method which he subsequently applied to other number-theoretical prob-
lems. As to the Goldbach conjecture, the famous Schnirelmann theorem of
1930 states that there exists a constant c such that every integer greater
than 1 can be represented as a sum of at most c primes. From a value of
c < 800,000 by Schnirehnann's original method, through subsequent refine-
ments and further developments, the value has come down to c < 6. (See
Wang Yuan [1984] for details.) The Goldbach problem has also catalysed
further developments of the Hardy-Littlewood circle method, and notably
the famous use of trigonometric sums in the theory of numbers.

Look at the treasure which attempted proofs of the Goldbach conjecture
has produced, and how much less significant by comparison its ultimate
'truth value' might be! Think of what PYTHIAGORA would have de-
prived us by telling us whether the conjecture was true or false, or, what
amounts nearly to the same thing, had Euler produced a two-line proof
by a reductio ad absurdum. Now let us suppose that one day somebody
comes up with a counter-example to the Goldbach conjecture or with a
proof that there exist positive even integers not representable as a sum of
two primes. Would that falsify or just tarnish all the magnificent theories,
concepts and techniques which were developed in order to prove the now
supposed incorrect conjecture? None of that. A disproof of the Goldbach
conjecture would just catalyse a host of new developments, without the
slightest effect on hitherto developed methods in an attempt to prove the
conjecture. For we would immediately ask new questions, such as to the
number of 'non-goldbachian' even integers: finitely many? infinitely many?
If finite, best upper bound? structure? characterisation? and so on. New
treasures would be accumulated alongside, rather than instead of the old
ones—thus and so is the path of proofs in mathematics!

Let us turn now to the second case history, the continuum hypothesis
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(CH). Whereas, as noted before, the Goldbach conjecture is not known to
imply any new theorems, the continuum hypothesis is rich in consequences.
Here again, the remarkable developments stemming from attempts to prove
or refute CH overshadow, in the long run, the importance of the 'ultimate
truth value' of the hypothesis (if, at all, it has a theory-independent truth
value). In 1878, Cantor formulated his 'two-class theorem', stating that
every uncountable subset of the set R of real numbers can be put in one-
to-one correspondence with the set of all real numbers; in other words,
there is no cardinal strictly between the cardinal of the set of natural num-
bers N and that of R. Following Moore ([1990], p. 155), I shall refer to
this statement as the weak continuum hypothesis (WCH). A second for-
mulation, given by Cantor in 1883 (on the strength of the well-ordering
theorem) states that the power of R (the continuum) is the same as the
power of the set of all countable ordinals. This is the continuum hypothesis
(CH), a statement equivalent to WCH (in ZFC). As is well known, Cantor
did not succeed in proving CH using the arithmetic machinery of cardinal
and ordinal numbers—a machinery he originally invented for dealing with a
problem in Fourier analysis. He then turned to topological methods, open-
ing unforeseeable vistas for future developments. Here Cantor obtained
partial success in 1884 through the Cantor-Bendixon theorem from which
it follows that WCH holds for all closed subsets of R: every uncountable
closed subset of R has the same power as R. Continuing the topological
attack, W. H. Young proved in 1903 that WHC holds for all uncountable
G6 subsets of R, followed by Hausforff's proof in 1916 that WCH holds for
all infinite Borel sets. Further work on CH spurred many developments in
topology by the Moscow school, contributing to the emergence of what is
now known as descriptive set theory. Among its early highlights is Suslin's
proof that WCH holds for all analytic sets. I shall not continue with an
account of these and subsequent developments but just refer the reader to
Moore [1989], [1990] and to Hallett [1984] for the history (plus explanation
of technical terms used above), and to Woodin [1994] for the current state
of the art.

A fascinating turning point occurred with Hilbert's attempted proof of
the continuum hypothesis in his famous 1926 article 'On the Infinite'. For
Hilbert, CH was a testing ground for the metamathematical methods he
and his collaborators were developing.

The final test of every new theory is its success in answering pre-existent
questions that the theory was not specifically created to answer. By their
fruits ye shall know them—that applies also to theories... The problem of the
continuum is distinguished by its originality and inner beauty; in addition it
is characterized by two features that raise it above other famous problems: its
solution requires new ways, since the old methods fail in its case, and, besides,.
this solution is in itself of the greatest interest on account of the result to be
determined. (Hilbert [1926]; p. 384 in van Heijenoort [1967]; italics added.)
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The novelty in Hilbert's attack on the continuum hypothesis consisted in
first replacing the real numbers by number-theoretic functions of the same
cardinality—and then moving to the metamathematical level by replacing
the functions by their definitions in a suitable logical system. With this
move Hilbert confronts the logical problems of definability of objects by
recursive schemes. Moreover, Hilbert adds a tacit axiom to the effect that
every set can be defined, as Godel keenly observed.2 However, faithful to
his philosophical program, Hilbert wished to reduce transfinite recursion to
ordinary recursion in order to maintain the finitistic attitude of his proof
theory. And thus, already on this account, the attempted proof was doomed
to failure. Yet, as van Heijenoort ([1967], p. 369) points out:

Hilbert's paper gave an impetus to the study of the hierarchy of number-
theoretic functions and to that of the various schemas for the recursive def-
initions of functions. In particular, Hilbert's work provides an approach to
the problem of associating ordinals with number-theoretic functions defined
by recursion.

Exit Hilbert. Enter Godel. After settling the completeness problem
of the predicate calculus, a problem proposed hi Hilbert and Ackermann
([1928], p. 68), Godel turned his attention to carrying out Hilbert's program
and proving the consistency of analysis by finitist methods. To reduce the
difficulty of the problem, he first represented real numbers by arithmetic
functions and these hi turn by formulas, in the manner Hilbert attempted to
prove CH. Running quickly afoul of the paradoxes connected with truth and
definability, he arrived at his famous incompleteness theorem. (See Wang
[1978], p. 183, and Wang [1981], p. 654.) Having already introduced non-
finitary reasoning into metamathematics in the proof of the completeness
theorem and thereby breaking with the Skolem and Hilbert injunctions,
Godel freely used ordinals in his work on CH. As Wang ([1974], p. 11)
relates:

• With regard to the continuum hypothesis, Godel attributes to a philosophical
error Hilbert's failure to attain a definite result from his approach to the con-
tinuum problem. The approaches of Godel and Hilbert are similar in that they
both define, in terms of ordinal numbers, a system of functions (or sets) for
which the continuum hypothesis is true. The differences are: 1. Godel used
all ordinals as given, while Hilbert attempts to construct them; 2. Hilbert
considers only recursively defined functions or sets, while Godel admits also
nonconstructive definitions (by quantification).

Godel himself discussed the link between Hilbert's attack on CH and his
own consistency proof in a lecture held at Brown University in 1940 (see
Godel [1995] Collected Works III, p. 175).

2 Reported by Wang |1981], p. 656. Here is the first link with Godel's 'constructive'
sets—a term Godel chose for definable sets in order not to clash with other notions of
definability.



WHY PROVE THEOREMS? 11

The two case histories which I have just presented, namely that of the
Goldbach conjecture and that of CH, are typical of the catalytic effect
of proofs as vehicles of ideas. Such examples are commonplace. Quite
frequently, mathematicians find themselves in the situation of Columbus:
one sets out to find a route to India, misses the objective, and... discovers
America! The case of Hilbert's attempt to prove CH with the indirect path
leading eventually to Godel's inner model of constructible sets teaches us
that even an aborted proof, if containing innovative ideas, is not necessarily
a dead end. An incorrect derivation, on the other hand, leads nowhere. It
is important, therefore, to look closer at the difference between proofs and
derivations.

Proofs versus Derivations

Let us fix our terminology to understand by proof a conceptual proof of
customary mathematical discourse, having an irreducible semantic content,
and distinguish it from derivation, which is a syntactic object of some for-
mal system. Since 'derivation' is a technical term, it admits of a precise
definition in the usual textbook fashion. Recall that a (linear) derivation in
a formalised theory T is a finite sequence of formulas in the language of T,
each member of which is either a logical axiom, or an axiom of T, or is the
result of applying one of the finitely many explicitly stated rules of inference
to previous formulas in the sequence. With some minor modification one
similarly defines a tree derivation. A formula of T is said to be derivable
if it is the end-formula of a linear or tree derivation. Furthermore, given a
finite sequence of formulas in a formal system, there is a purely mechanical
way for ascertaining whether the given sequence satisfies the conditions of
being a derivation in the system. So far so good. On the other hand, when
it comes to the term 'proof—in the sense of an informal conceptual proof
as used in this article—the situation is entirely different. Since the mean-
ing and scope of the term 'proof are not fixed by a technical definition,
the subject of proofs is par excellence a topic for philosophical reflection
and analysis. Indeed, as Detlefsen [1992b] writes in the preface, 'arriving
at some understanding of the nature and role of proof becomes one of the
primary challenges facing the philosophy of mathematics'.

The relation between proofs and derivations is in a limited sense anal-
ogous to the relation between the non-technical term of effectively com-
putable function and the technical term of partially recursive function.
Church's Thesis serves as a bridge between the intuitive and the tech-
nical notion of computability. In a similar vein it has been suggested to
name Hilbert's Thesis the hypothesis that every conceptual proof can be
converted into a formal derivation in a suitable formal system: proofs on
one side, derivations on the other, with Hilbert's Thesis as a bridge between
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the two.3 One immediately observes, however, that while Church's Thesis
is a two-way bridge, Hilbert's Thesis is just a one-way bridge: from a for-
malised version of a given proof, there is no way to restore the original proof
with all its semantic elements, contextual relations and technical meanings.
Once we have crossed the Hilbert Bridge into the land of meaningless sym-
bols, we find ourselves on the shuffleboard of symbol manipulations, and as
these symbols do not encode meanings, we cannot return via the Hilbert
Bridge and restore meanings on the basis of a sequence of symbols repre-
senting formal derivations. After all, it is the very purpose of formalisation
to squeeze out the sap of meanings in order not to blur focusing only on
the logico-structural properties of proofs. Meanings are now shifted to
the metalanguage, as is well known. Metaphorically speaking, the relation
between a proof and its formalised version is about the same as the re-
lationship between a full-view photo of a human being and a radiograph
of that person. Surely, if one is interested in the skeletal structure of an
individual for diagnostic purposes, then the X-ray picture yields valuable
information. But from a radiograph one cannot reconstruct the ordinary
full-fledged view of the individual.

Let there be no misunderstanding. The study of structural properties
of formalised proofs is a deep and important branch of mathematical logic,
known as proof theory. (No pedantic insistence now on calling it derivation
theory.) By a general consensus, mathematical logic is now considered
part of mathematics and proof theory is a branch of mathematics, on par
with, say, homological algebra. With the demise of Hilbert's program as
originally conceived, important new lines of proof-theoretical research have
emerged. (See Simpson [1988].) The study of proofs (in the sense of this
essay) and the proof-theoretical study of derivations and related problems
belong respectively to different methodologies. We render therefore unto
proof theory the things which are proof theory's, and let philosophy of
mathematics deal with the nature and function of conceptual proofs as
they occur in actual mathematical practice.

Proofs as the Site and Source of
Mathematical Knowledge

I. Methodology and Pure Logic in Meaning-Dependent Proofs
Proofs employ deductive reasoning; so do judicial rulings. In both cases log-
ical inferences cement sequences of topic-specific claims and considerations.
However, neither mathematical proofs nor legal rulings can be rendered in-
telligible by attending only to their deductive components.

3 To avoid any misunderstanding, let me stress that I do not subscribe to Hilbert's
Thesis. I just explore here its implications. See also the insightful articles of Vega
[1993|, [1995].
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Proofs are the mathematician's way to display the mathematical machin-
ery for solving problems and to justify that a proposed solution to a problem
is indeed a solution. The word 'problem' is used here in a generic sense for
any open question, in the manner one speaks of the famous Hilbert Prob-
lems of 1900. The problem might be an existing conjecture, like the twin-
prime conjecture, or the problem of charting properties of some structures,
or it may have been posed with some applications in mind. Frequently,
problem and solution are the brain-child of one and the same person. We
normally ask ourselves how to extend and refine an existing theory, method,
technique, concept, and the like. It is the mark of creative mathematicians
to propose interesting avenues for research and make a significant contribu-
tion toward the solution of the ensuing problems. But what does a solution
consist of in a theoretical context? Recall the words of Hilbert concern-
ing the continuum problem, saying that 'its solution requires new ways,
since the old methods fail in its case'. Does new ways mean new canons
of logic? Certainly not. The handful of rules of inference of a system of
natural deduction ought to suffice. No additional rules of inference have
ever been proposed for solving new problems. Moreover, one does not even
think about rules of logic in writing or reading a proof, technical work
in logic apart, but uses them in the manner in which Moliere's Monsieur
Jourdain speaks prose. A proof in mainstream mathematics is set forth
as a sequence of claims, where the passage from one claim to another is
based on drawing consequences on the basis of meanings or through ac-
cepted symbol manipulation, not by citing rules of predicate logic.4 The
argument-style of a paper in mathematics usually takes the following form:
' . . . from so and so it follows that..., hence...; as is well known, one sees
that...; consequently, on the basis of Fehlermeister's Principal Theorem,
taking in consideration a, /?, 7 , . . . , ui, one concludes..., as claimed'. Why
is it so difficult, in general, to understand a proof? Why does one need so
much background information, training and know-how in order to follow
the steps of a proof, when the purely logical skeleton is supposed to be
nothing more than first-order predicate calculus with its few and simple
rules of inference? A comparison with legal texts comes again to mind
and deserves a closer look because of the many parallels with reasoning in
mathematics.5

Logic, ever since Aristotle, has been concerned with valid inferences of

* In the same spirit, Arbib ([1990], p. 55), writes: 'In fact, the usual proof generated by
a mathematician does not involve the careful application of a specifically formalised rule
of inference, but rather involves a somewhat large jump from statement to statement
based on formal technique and on intuitions about the subject matter at hand.'

8 Notice how even some of the phrasingB of judicial rulings and mathematical arguments
are analogous: the one refers to precedents, the other to known theorems, and so on.
Also, see the article of Alchourron and Martino [1987] and other articles in the same
volume dealing with legal reasoning.
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argument forms, while accounts of arguments in terms of their intertex-
tual contexts have remained outside its scope. The situation will hopefully
change because of work in linguistics, artificial intelligence and cognitive
science. As things stand now, we have remarkable mathematical theories
of formal logic, but inadequate logical theories of informal mathematics.
(Cf. Corcoran [1973] for concrete examples of gaps in logical theories.) As
to the importance of logic for mathematics, I certainly do not wish to im-
ply in the manner of Poincare'6 that mathematical knowledge cannot be
extended by means of logical inferences. I think Poincare' sought refuge in
outmoded Kantian conceptions of bgic because it was congenial to his own
geometric and intuitive ways of thinking. On the other hand, to algebraic
spirits, logical inferences are definitely productive in extending knowledge
by virtue of bringing to light otherwise unsuspected connections. Consider
a simple example: we do not have to postulate that a group contains a
unique identity element. It suffices to postulate that such an element ex-
ists, and then derive its uniqueness on the basis of the other group axioms.
And that constitutes knowledge, simple as it is. Standard algebraic symbol
manipulations can readily be rewritten as formal derivations, hence com-
puter programs can be developed for symbolic calculations. Obviously, the
results of such calculations constitute knowledge. (Why else bother?) To
return to the main point, Poincar^ did however raise an important issue
concerning the non-logical parts of a mathematical proof. But the view-
point developed in this essay is rooted in a different perspective.

In reading a paper or monograph it often happens—as everyone knows
too well—that one arrives at an impasse, not seeing why a certain claim
B is to follow from claim A, as its author affirms. Let us symbolise the
author's claim by 'A —> £ ' . (The arrow functions iconically: there is an
informal logical path from A to B. It does not denote formal implication.)
Thus, in trying to understand the author's claim, one picks up paper and
pencil and tries to fill in the gaps. After some reflection on the background
theory, the meaning of the terms and using one's general knowledge of the
topic, including eventually some symbol manipulation, one sees a path from
A to A\, from A\ to A2, • • •, and finally from An to B. This analysis can
be written schematically as follows:

A-* Ai,A\ —> A2, ...,An—> B.

Explaining the structure of the argument to a student or non-specialist, the
other may still fail to see why, for instance, A\ ought to follow from A. So
again we interpolate A —» A', A' —> A\. But the process of interpolations
for a given claim has no theoretical upper bound. In other words, how
far has one to analyse a claim of the form 'from property A, B follows'

6 For a penetrating analysis of Poincare's position, see Detlefsen [1992a), [1993].
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before assenting to it depends on the agent7 There is no theoretical reason
to warrant the belief that one ought to arrive at an atomic claim C —* D
which does not allow or necessitate any further justifying steps between
C and D.B This is one of the reasons for considering proofs as infinitary
objects. Both Brouwer and Zermelo, each for different reasons, stressed the
infinitary character of proofs. Kreisel ([1970] footnote 22, p. 511) cites the
appropriate references and notes (with respect to the insight that proofs
are of infinite character) that 'properly interpreted, Godel's theorems can
be used to support this insight, just as they are used to refute Hilbert's
assumption that finite formal derivations reflect faithfully the structure of
mathematical reasoning' (Kreisel's emphasis).

II. 'Was sind und was sollen die Axiome?' or Where Are the
Axioms?
So far I have talked about proofs without mentioning theorems. But aren't
theorems the essence of a mathematical research paper while proofs serve
only the subsidiary function of deducing theorems from axioms? Indeed,
the standard view in philosophical writings seems to be that mathematical
knowledge resides in a body of theorems (propositions, sentences), whereas
the function of proofs is to derive theorems from first principles, true ax-
ioms, and thus confer truth on the theorems. Or, in a less Aristotelian
fashion, proofs serve only to validate theorems on the basis of accepted
axioms. No doubt that the 'standard view' is neat and philosophically sat-
isfying. Its major drawback is that it does not fit mathematical practice,
nor is it capable of explaining the source of mathematical knowledge and the
dynamics of its growth (see Kitcher [1981] and [1984]). Thurston ([1994b],
p. 162) even dubs the 'standard view' a 'caricature [of] the popular model'.
Let us look at some typical examples which bring out the ill-foundedness
of the 'standard view', putting conceivable set theoretical reductions aside
for a moment.

T The process of 'arrow interpolations' can be modelled as a dialogue (cf. Mackenzie
(1980) and (1981]; Ernest [1995]). The length of a dialogue depends, of course, on the
interlocutors.

8 Nor do we have any guarantee that a lengthy mathematical argument can be arranged
in a neat linear chain as the above schematisation might suggest. Mathematics does not
escape the circularity predicament of dictionary definitions, valiant efforts in both cases
notwithstanding. Thus Steinbring (|1991|, p. 505) writes:

Bernoulli's theorem required the abandonment of a supposedly deductive point
of view in the development of knowledge and theory: what probability is can only be
explained by means of randomness, and what randomness is can only be modelled by
means of probability. This is where one accedes to those problems in the theoretical
foundations of mathematics which, in a modern perspective, have become known as
the circularity of mathematical concept definitions... This circularity or self-reference
implies that knowledge must be interpreted, at all stages of its development, as a
complex structure which cannot be extended in a linear or deductive way, but rather
requires a continuous, qualitative change in all the concepts of a theory. (Italics in
original.)
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(1) Matrix theory. The term matrix first appeared in an article by Sylvester
in 1850; but the topic grew from prior concern with determinants. To-
day, matrix theory is a vast subject of importance both in pure math-
ematics and for its applications to such diverse fields as quantum me-
chanics, game theory, economics—to name just a few. No axioms have
ever been proposed for even a fragment of matrix theory. It is a typical
unaxiomatised theory. What is then the logical status of its extensive
results?

(2) Graph theory and combinatorics. Both have long histories, with roots
in recreational mathematics, chemistry (Cayley) and physics (Kirch-
hoff). In the first standard text on graph theory by Konig [1936], its
author mentions just one axiom, and significantly, puts the word ax-
iom in quotation marks. Indeed, the axiom in question is just a more
elaborate and abstract version of Euclid's postulate permitting points
to be joined by a line. Once more we have an unaxiomatised theory,
rigorous nonetheless, on the frontier of current research, with multi-
ple applications, including to mathematical logic! The close relative of
graph theory, algebraic topology, is likewise not axiomatically treated,
definitions apart.

(3) Probability theory. Probability theory originated as early as the fif-
teenth century (Pacioli, Galileo, etc.) in analyses of games of chance
and rapidly developed into a significant mathematical theory. Yet an
axiomatic foundation was first proposed in the famous monograph of
Kolmogorov in 1933. And yet, Kolmogorov's five axioms serve little
for a logical foundation of probability theory in the sense that all its
theorems could be deduced from these axioms. Rather, the significance
of Kolmogorov's monograph consists in making probability theory a
branch of measure theory, with its specific emphases and applications.
As to measure theory, apart from various definitions of measure, it has
never been axiomatised.9

(4) Number theory. Once more, a non-axiomatised theory! Notice that I
am talking about number theory as the term is understood by the gen-
eral mathematical community—not to be confounded with first-order
or fragments of second-order axiomatised Peano arithmetic, which is
a branch of mathematical logic.10 As a matter of fact, the Queen of
Mathematics—as Gauss called number theory—is rather promiscuous,
opening her arms to algebraic, analytic, topological, geometrical, proof-
theoretical, numerical, model-theoretical, combinatorial, and come as
they may types of proofs and methodologies. Categorically, the Queen

B See the previous footnote.
10 The book by Smorynski [1991] is typical of work in Peano arithmetic, while, for
instance, the book of Yuan Wang |1984) about the Goldbach conjecture typifies work in
number theory.
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disdains being degraded to the rank of a recursively axiomatisable the-
ory. Noblesse oblige!

(5) Group theory. Evariste Galois (1811-1832) introduced the term le
groupe, but group theory had a bng prior history, with origins in ge-
ometry, number theory and the theory of equations.11 Starting with
groups of transformations and permutations, the abstract concept of
group became standard only in the 1880s, defined as a collection of el-
ements with a binary operation o and a distinguished identity element
e satisfying the following axioms:

(i) (Vx)(Vy)(Vz)[zo(yoz)=(xoy)o2];

(ii) (Vi)[eoi = i j ;

(iii) (Vz)(3j/)[i/ox = e].

Thus, group theory can be formalised as a first-order theory and, as
such, has been extensively studied by logicians.12 But behold: themeta-
mathematical methods used in studying the first-order theory of groups
are themselves not axiomatised! Furthermore, the standard theorems
of group theory that one finds in books and papers on group theory are
not even expressible in first-order predicate calculus.13 One just has
to think about such fundamental concepts as normal subgroup, torsion
group, finite group, composition series, or such famous theorems such
as the Sylow theorems about p-groups, the Jordan-Holder theorem1'4

and the like, to realise that the implicit underlying logic of mainstream
group theory is second-order logic.15 But as there is no complete and

11 See Kline [1972], pp. 764-770 and pp. 1137-1146 for an overview of the history of
group theory. A detailed account can be found in Wussing [1984 (1969)).
12 One of the earliest applications of logic to group theory goes back to 1948 with
Tarslci's theorem to the effect that first-order group theory is undecidable, whereas the
theory of abelian groups is decidable, as was shown by Tarski's doctoral student, Wanda
Smielew. Hodges [1985) discusses many applications of model theory to group theory,
including the use of infinitary logic, and word problems.
13 Observe the following: turning the crank of the deductive machinery of first-order
predicate logic upon the first-order axioms of group theory will produce a potentially
infinite number of formulas which count as theorems of first-order group theory. But
hardly any of these formally derived theorems would be found as a theorem in the
immense literature on group theory. Why? (Rhetorical question) This ought to stir the
slumber of those who still think of mathematicians as deduction machines rather than
creators of beautiful theories and inventors of methods and concepts to solve humanly
meaningful problems.
14 For terminology, see Rotman [1973].
18 The arguments of this and the previous examples bring just a few more sacks to the
mill of Shapiro [1991] who has cogently argued that the underlying logic of mathematical
practice is second-order logic.
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effective deductive system for a second-order logic, we are left with the
question of how to account for the validity—or truth, if this is your pre-
ferred locution—of the group-theoretical methods and results, be they
of metamathematical or mainstream nature. Are we going to affirm
that the axioms of group theory are bearers of validity (or truth) and
thus confer validity (or truth) via a non-effective logic to the theorems
of group theory? Certainly not, for the group axioms are just deRni-
tiones quid nominis.. Recall that we have momentarily put aside any
consideration about reductions to set theory.16 But even if one con-
siders developing the theory of groups within ZFC set theory, one can
legitimately ask what was the status of, say, the Sylow theorems when
they were proven in 1872, prior even to Cantor's first publication on
set theory. And if we discover one day an inconsistency in ZFC, do the
Sylow theorems lose thereby their validity? And once the inconsistency
is remedied after some labour and set theory is appropriately modified,
will then the Sylow theorems regain validity lost? The answer is clear:
the 'standard view', that the function of proofs is to deduce theorems
from 'true' axioms, is untenable.

Examples of non-axiomatised theories in actual mathematical practice
are the rule—geometry is the exception. Thus, Fair ([1984], p.366) writes:

Mathematicians have "informal notions" or "intuitions" about what particular
mathematical objects are like with regard to their essential or defining charac-
teristics. They often have proceeded with the business of theorem-proving in
the total absence of any explicitly stated axioms. This fact is at least a prima
facie embarrassment to the thesis, "Mathematics is the science of formal sys-
tems" . [Reference to Curry.] Euclid's work in nunlber theory could hardly be
described as deducing consequences from the Peano axioms first articulated in
the nineteenth century.

In talking about the axiomatic method in mathematics, one has to dis-
tinguish between several variants and versions:
(i) The clearest is no doubt the notion of a first-order axiomatised theory
in the sense of model theory. The logical axioms and rules of inference
fix the deductive machinery, and the non-logical axioms fix the intended
subject matter of given theory T under investigation. The axioms of a
formalised theory serve as a basis for deriving theorems. The term 'basis'
is chosen here by analogy with a basis of a vector space. Just as any
vector is a linear combination of basis vectors, a theorem of T is a 'logical
combination' of axioms. As the axioms La a formalised theory are strings

16 Cf. Mac Lane [1992], p. 122 :
Set theory, like the rest of mathematics, is protean, shifting and working in dif-

ferent ways for different uses. It is subordinate to mathematics and not its founda-
tions. The unity of mathematics is real and depends on wonderful new connections
which arise all around us. (italics mine)
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of symbols, syntactic objects, the issue of their truth is vacuous, and so is
the issue of the truth of formulas derived from the axioms. The technical
Tarskian concept of 'true in a model' (as standing for 'satisfiable') is the
sole context in which one can legitimately speak of truth in mathematics
without committing a 'category mistake'. All other talk about truth of
mathematical statements is metaphorical, and as such, is unproblematic.17

(ii) Besides axioms in a formalised theory, one also speaks of axioms which
define (informally) an abstract structure, such as the axioms of a group,
ring, field, vector space, topological space, etc. Here again the question of
validity or truth of the axioms is not meaningful; the axioms function just
as definitions, definitiones quid nominis. In other words, from the current
structuralist conception of mathematics, such axioms fix the boundaries of
an informal theory but do not impart it with a logical foundation in the
Aristotelian sense of 'first principles'.

(iii) Between these two cases, axioms of geometries occupy an intermediate
place.18 Clearly, axioms of this category do fulfil a deductive role; indeed,
the 'standard view', fashioned with the Euclidean axioms and postulates in
mind, is referred to as the 'Euclidean programme' in the pungent criticism
by Lakatos [1962]. Yet with the advent of non-Euclidean geometries, any
conceivable justification for categorising geometric axioms as true has lost
its ground. Thus, Kline ([1953], p. 9) writes:

Mathematics is a body of knowledge. But it contains no truths... Not only is
there no truth in the subject, but theorems in some branches contradict theo-
rems in others. For example, some theorems established in geometries created
during the last century contradict those proved by Euclid in his development
of geometry. Though devoid of truth, mathematics has given man miraculous
power over nature.

III. The Epistemic Function of Proofs
We have arrived at the core of the epistemological puzzle: what confers
validity on theorems, or more generally, on mathematical methods and
results? As repeatedly stressed, the Aristotelian concept of a deductive
science is embrangled with insuperable difficulties, incapable of accounting

l r I take it as a metaphorical use of 'true' when Thomas ([1990], p. 80) writes:
A public [mathematical] statement is regarded as true when the mathematical

community can be convinced that it has been properly deduced from what is already
explicit in the public mathematics. Note that the truth of a public statement does not
depend upon any correspondence of it with a state of affairs in a mathematical 'realm'.
Semi-Platonism is irrelevant; even if all the many things that mathematicians have
from time to time invented were located (even metaphorically) anywhere, it would
make no difference to mathematical practice.

See also Thomas [1991] for the priority of meaning in mathematics.
18 For a current discussion of the axiomatic method in geometry, see the articles in
Henkin et el. [1959].
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for the validity of theorems in mathematics.19 Are we then left with the
conclusion that the totality of mathematical theorems and methodologies
is ill-founded unless we wave the set-theoretical foundation flag and express
the pious hope that—at least in principle—every mathematical theory can
be formalised in ZFC or in some similar theory? I dare say this is a pious
hope, for no metamathematical proof has ever been advanced to justify the
formalisation credo.20 And as I have already asked before, even granting
for argument's sake the possibility of such a formalisation, did mathematics
created prior to the invention of set theory lack validity or will it be so if,
per chance, ZFC turns out to be inconsistent? No doubt, mathematical
knowledge is solidly soldered, but it is futile to seek foundations for math-
ematics in its entirety in another mathematical theory, be it set theory or
category theory.

There is a way out of the foundational difficulty, and it consists of realis-
ing that proofs rather than the statement-form of theorems are the bearers
of mathematical knowledge. Theorems are in a sense just tags, labels for
proofs, summaries of information, headlines of news, editorial devices.21

The whole arsenal of mathematical methodologies, concepts, strategies and
techniques for solving problems, the establishment of interconnections be-
tween theories, the systematisation of results—the entire mathematical
know-how is embedded in proofs. When mathematicians pick up a pa-
per for study, they turn their attention to the proofs, since proofs are the
centre of gravity of a research paper. Theorems indicate the subject matter,
resume major points, and as every research mathematician knows, they are
usually formulated after a proof-strategy was developed, after innovative
ideas were elaborated in the process of 'tossing ideas around'. Proofs are
for the mathematician what experimental procedures are for the experi-
mental scientist: in studying them one learns of new ideas, new concepts,
new strategies—devices which can be assimilated for one's own research
and be further developed. Needless to stress that in studying proofs—or
experimental procedures—we are also engaged in a cumulative collective
verification process. Think of proofs as a network of roads in a public
transportation system, and regard statements of theorems as bus stops;

18 See Beth (1968), chap. 2, for an exposition and criticism of the Aristotelian conception.
Cf. also the epoch-making attack by Lakatos (1962J on deductivism in mathematics.
20 To avoid any misunderstanding: certainly, it is one of the many values of set the-
ory that most of our current mathematical theories can be expressed in first-order set-
theoretical language. This, however, does not imply that all our current conceptual
proofs of informal mathematics can be formalised as derivations, as claimed by the
Hilbert Thesis. Recall just the problem of 'arrow interpolation'; see also footnote 8.
21 It is noteworthy that words like theorem, proposition, or the like appear nowhere in
Descartes's La C&un&rie; his book consists of a continual unfolding of methods. Euler
rarely uses the term propositio; his usual phrasings are problems—solutio—exemplum,
with an occasional corollarium—scholium. Such examples are quite typical of pre-
nineteenth century texts.
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the site of the stops is just a matter of convenience.
Let me illustrate the epistemic function of proofs by three examples.

As a first example, consider Euclid's Proposition 20 (Book DC)22 which
states: 'Prime numbers are more than any assigned multitude of prime
numbers'. In modern notation, the statement claims that given prime num-
bers Pi.pa, • • • ,pn , it is possible to find a prime number q distinct from the
primes p\,pi,.. • ,pn. The idea of Euclid's proof is to consider the number

N = PlP2 • • • Pn + 1

and argues that either N is a prime, in which case it could not be equal to
any of the Pi (1 < i < n)\ or else, since it was shown that every composite
number has a prime factor (Prop. 31 of Book VIII), N is divisible by a
prime q. The proof concludes with the observation that again q could not
be any of the pi (else it would divide 1). Hence there is always a prime
distinct from any given number of primes, q.e.d. Clearly, the key idea of
forming the number N does not follow logically from any previous proposi-
tion or conceivable arithmetic axiom.23 It is a purely creative, topic-specific
move; this move, simple as it is, constitutes a contribution to mathematical
knowledge which goes beyond the statement of the proposition. Indeed, by
the same method as in forming the number N one proves that there are
infinitely many primes of the form 4n + S.24 Furthermore, Euclid's idea of
formingP1P2 .. .pn + l was used by Godel in order to show that the function
P(n) taking the nth prime number as its value is [primitive] recursive. (See
Godel in van Heijenoort [1967], p. 604, formula 5).

There are various other ways of proving Euclid's Proposition 20, each
proof setting forth concepts and methods which are not part of the for-
mulation of the proposition. By way of illustration, consider the following
formula of analytic number theory:25

p<x
p

It follows from this formula that there are infinitely many prime numbers,
for the term on the right-hand side is unbounded, whereas if the num-
ber of primes were finite, the left-hand-side summation would be bounded.

2 2 Heath |1956], vol. 2, p. 412.
2 3 Notice, apropos first-order logic, that the numeral corresponding to the number
pipa • • • Pn + 1 cannot be expressed by a single formula in first-order Peano arithmetic
(because of the parameter 'n ' in the term).
2 4 Put N = 4[(4m + 3)(4na + 3 ) . . . (4nfc + 3)| + 3. If AT is composite, not ail prime
factors of N could be of the form 4 m + 1, else their product would also be of that form.
2 5 Cf. Rademacher [1964], p. 120.
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But the formula yields more information about the infinitary character of
the number of primes than does Euclid's proof: for the formula implies
that the series on the left-hand side diverges, and this in turn has various
number-theoretical implications. Proofs, we conclude, contain significant
topic-specific information going beyond the statement incorporated into
the formulation of a theorem. Or to speak metaphorically, theorems are the
headlines, proofs are the inside story.

My second example comes from the theory of finite groups and concerns
one of the oldest theorems in the field, namely, the theorem of Lagrange:26

'If Q is a finite group of order g and H is a subgroup of Q of order h,
then h divides g\ (Recall that the order of a group is the number of its
elements. We use capital Roman letters for group elements, 'Id' for the
identity element, and juxtaposition for the group operation.) Here are the
steps of the proof. Consider complexes of the form HX,27 called right-
cosets of 7i, consisting of all products HX, with X a given element of Q,
and H running through the elements of H. One first shows:

Step (1): Any two right-cosets are either disjoint or coincide.
Step (2): Any right-coset HX has as many elements as H, namely h.
Step (3): There exist elements X\ =Id, X j , . . . , Xk in G such that every

element of Q belongs to one of the distinct cosets HX* where
1 < t < fc.

From these steps it follows that Q is partitioned into k disjoint cosets of
h elements each, hence n = hk, as claimed by Lagrange's theorem. This
short proof is a good example of how a key concept—that of cosets—is
intertwined through logical argumentation with methodological steps to
yield the arithmetical relation as stated in the theorem. Each step requires
a separate justification, based on the concepts involved. Step (3) is es-
tablished with the aid of mathematical induction, a conceptual machinery
belonging to arithmetic, and the final conclusion, linking the three steps,
also depends on a theory of arithmetic. Here, the arithmetical machinery
is called upon as a subproof, in the manner in which subprograms function
in computer programming. All told, one sees that there is more technical
information, more mathematical knowledge embodied in the whole proof
with all its methodological links and inter-theoretical connections than in
the statement of the theorem.

The third example to be discussed concerns Fermat's Last Theorem

26 The theorem appears in a lengthy paper on the theory of equations and concerns the
structure of permutations, the prototype and progenitor of the abstract group concept.
See Joseph Louis Lagrange; 'Rifl&cions sur la resolution a/g£brique des Equations' [1771]
(Euvres, vol. 3, pp. 205-^21, and the historical discussion in Wussing |1984|, pp. 77-79.
Notice that the statement of Lagrange's theorem is not even expressible in the language
of first-order group theory, not to speak of deriving it from the group axioms.
2T The term 'complex'—still in use—predates set-theoretical terminology, and means
the same thing as subset. Thus, HX is a subset of Q.



WHY PROVE THEOREMS? 23

(FLT). The story of this example will be a bit longer, but worth telling
because of its ample epistemological implications.

The famous affirmation written by Pierre de Fermat circa 1637 states,
in modern terminology, that the diophantine equation

xn+yn = zn

has no solution in positive integers if n > 2.M Since the case n = 4 is
easy to dispose of, one readily sees that it suffices to consider the Fermat
equation when the exponent n is an odd prime p (see Edwards [1977] or
Ribenboim [1979] for historical and technical details).

Fermat's Last Theorem counts as one of the most widely known math-
ematical problems. Simple to state, with prizes and fame having awaited
whoever would prove it, FLT has for centuries opened the door for ama-
teurs to rush in where masters feared to tread. When in 1816 a friend has
suggested to Gauss to compete for the prize which the Paris Academy had
proposed for a proof of FLT, Gauss wrote back: 'I am very much obliged for
your news concerning the Paris prize. But I confess that Fermat's Theorem
as an isolated proposition has very little interest for me, because I could
easily lay down a multitude of such propositions, which one could neither
prove nor dispose of.' (Quoted by Bell [1937], p. 261). Gauss foresaw cor-
rectly that major advances would first have to be made in algebraic number
theory before any light could be shed on the Fermat conjecture. Gauss fur-
ther elaborated in his letter: ' . . . if I succeed in taking some of the principal
steps in that theory, then Fermat's Theorem will appear as only one of the
least interesting corollaries." (Italics added.) And indeed, that turned out
to be the case. Work on the Fermat conjecture resulted in the creation
of the theory of ideals by Kummer, catalysing major subsequent advances
in algebraic number theory. Nonetheless, only very special cases of FLT
were settled with these powerful theories. Indeed, showing that an isolated
diophantine equation, like the Fermat equation, does or does not admit a
solution is of little significance for the growth of mathematical knowledge.
What Gauss apparently had in mind was the creation of a general theory
of diophantine equations. As a step in this direction, Hilbert proposed in
his famous Paris lecture of 1900 as Problem Number 10 to find a general
method—an algorithm—for determining, by a finite number of operations,

28 It is known since antiquity that a square can be written as a sum of two squares
(Pythagorean triplets). Fermat wrote in the margin of his copy of Diophantus, where
this problem is given, the following famous words:

On the other hand, it is impossible for a cube to be written as a sum of two cubes
or a fourth power as a sum of two fourth powers or, in general, for any number which
is a power greater than the second to be written as a sum of two like powers. I have a
truly marvelous demonstration of this proposition which this margin is too narrow to
contain. (Cf. Edwards |1977|, p. 2)
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the solvability or unsolvability in integers of an arbitrary diophantine equa-
tion with any number of unknowns and with integer coefficients. With more
than half a century of developments in mathematical logic to build upon,
Yuri Matiyasevich succeeded in 1969 in proving that no such algorithm can
be found.29 Using the techniques of Matiyasevich and those of other con-
tributors, Baxa [1993] constructed a polynomial diophantine equation in 20
variables which has no solution in non-negative integers if and only if the
Fermat exponential diophantine equation

x«+3 + yt+3 = zt+3

has no (non trivial) integral solutions in the variables x, y, z, t. The reduc-
tion of the Fermat equation—which is exponential with arbitrary exponents
n—to a polynomial equation is significant, though this method has not, for
the time being, yielded a proof of FLT. (My refrain: a method, like virtue,
is its own reward.)

Let us look at other approaches. Traditionally, FLT is split into two
cases. The first case is said to hold if there is no primitive solution to the
Fermat equation in integers x, y, z coprime to p. Case II holds if there is no
primitive solution with p dividing xyz. One of the earliest results on FLT is
a theorem of Sophie Germain (1832) which states that the first case of FLT
holds for an exponent p if 2p +1 is also a prime number. Thus, for example,
Case I holds for p = 3, p = 5, but Germain's theorem gives no information
for p = 7. Her method was the first general attack on FLT. With the
development of high-speed computers, numerical methods were developed
which enabled efficient numerical verifications of FLT up to a certain power.
Thus Wagstaff showed in 1978 that FLT holds for all exponents n < 125000,
and Lehman showed in 1981 that Case I holds for all p < 6 x 109 (see Heath-
Brown [1985b] for references). Note that the numerical approach to FLT
required first the development of special number-theoretical and numerical
methods, for a brute-force numerical attack could never prove that for a
given exponent n there is no solution: one cannot just try out numerically
all triplets x, y, z; for there are infinitely many to check.

Important advances over the last 15 years in algebraic geometry and in
analytic number theory yielded as a by-product new ways for studying the
Fermat equation. First, Faltings [1983] stunned the mathematical world
with his proof of Mordell's conjecture (1922) concerning rational points on
curves of genus > 2. It follows as a corollary from the Mordell-Faltings
theorem that for a fixed n > 2, the Fermat equation can have at most
a finite number of solutions. Elaborating further, Heath-Brown [1985a]
showed that FLT holds for 'almost all' exponents n. That means that if
N(x) is the number of n < x for which FLT fails, then l i m ^ o o ^ i l = o.

28 Cf. Matiyasevich [1993] for details and recent developments of his method.
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Still, FLT could fail for infinitely many exponents n. Coming from an
entirely different direction, the researches of E. Fouvry in analytic number
theory enabled him to apply his methods to obtain a sharp estimate in an
inequality studied by Adleman and Heath-Brown [1985], thereby settling
Case I of Fermat's Last Theorem for infinitely many exponents (see Fouvry
[1985]). This is the first time in the history of the Fermat conjecture that
a proof for one of the two cases was obtained for infinitely many exponents
(see the expository article by Heath-Brown [1985b]).

The crowning triumph over the Fermat gadfly belongs to algebraic ge-
ometry, in particular to the theory of modular elliptic curves—a topic of
intensive research since the fifties (see Lang [1995]). The remarkable con-
nection between Fermat's Last Theorem and the theory of elliptic curves
was first established by Hellegouarch [1972] who associated with the Fermat
equation

(F) ap + V = <?

(with p > 3, a, b, c relatively prime) an elliptic curve of the form

(E) y2 = x ( x - a * ) ( i + 6").

(Permuting a, 6, and c, changing sign if necessary, one can assume that b
is even and a = —1 (mod 4). This connection was discussed again in an
Oberwolfach lecture by G. Frey in 1985 who sketched an intricate argument
from which it would follow that the semistable elliptic curve (E) was non-
modular. Since a famous conjecture of Shimura and Taniyama states that
every elliptic curve over Q is modular, the existence of the Hellegouarch-
Frey curve (E) contradicts the Shimura-Taniyama conjecture.30 Hence a
proof of the Shimura-Taniyama Conjecture would imply the non-existence
of the Hellegouarch-Frey curve (E), and hence the non-existence of a so-
lution to the Fermat equation (F). The argument of Frey [1986] was com-
pleted with significant additional results by Ribet [1990], thereby proving
conclusively:

(R) Shimura-Taniyama Conjecture —• Fermat's Last Theorem.

Though as noted before, FLT is insignificant (historical interest apart), the
Shimura-Taniyama conjecture is, in the words of Lang [1995], 'one of the
most important [conjectures] of the century'. One can thus understand the
great excitement in the audience when in his famous Cambridge lecture of
June 1993, Andrew Wiles announced that he has succeeded in proving the

30 See Ribet [1995] for details and bibliographical references. Important background
information about the history of the Shimura conjecture is in Lang [1995].



26 RAV

Shimura-Taniyama conjecture. The theory which Wiles developed for prov-
ing the Shimura-Taniyama conjecture fills over one hundred printed pages
(see Wiles [1995]). Fermat's Last Theorem follows now by modus ponens
from the Shimura-Taniyama-Wiles Theorem and (R). The report by Ribet
[1993] of Wiles's epoch-making proof ends with the following significant
words:

Wlles's proof of Taniyama's conjecture represents an enormous milestone for
modem mathematics. On the one hand, it illustrates dramatically the power
of the abstract 'machinery' we have amassed for dealing with concrete Dio-
phantine problems. On the other, it brings us significantly closer to the goal
of tying together automorphic representations and algebraic varieties.

Let us take stock. The starting point of my third example was an open
problem: to determine whether a certain diophantine equation, the Fermat
equation, admits solutions in positive integers. I have mentioned diverse
methods and theories which have been developed in order to settle the
Fermat conjecture, notably methods of algebraic number theory, numerical
analysis, diophantine representations, density arguments, tools from ana-
lytic number theory, and finally, the intricate theory of modular elliptic
curves. With the exception of the proof via the Shimura-Taniyama con-
jecture, none of these approaches settled FLT, yet each attempt enriched
mathematics with new concepts and techniques. Without consulting the
proofs, no list of theorems could convey the links, inter-theoretical con-
nections, strategies and overall mathematical knowledge embodied in these
methods. The passage from equation (F) to the elliptic curve (E) is par-
ticularly instructive: it is neither a theorem nor the result of applying a
rule of logic. As I keep stressing, such topic-specific moves are standard
in mathematical discourse and are habitually introduced with the innocent
looking imperative 'Let...', or 'Consider...'. I have referred to such steps
as moves by analogy to moves in a game of chess. Moves are made in
conformity to the rules of the game, but no rule ever suggests which is
the appropriate move to be made in a given situation. In the first exam-
ple with Euclid's proof, the key move consists in considering the number
P1P2 • • pn + 1; in the proof of Lagrange's theorem, the crucial step resides
in introducing cosets and decomposing a group as a direct sum of right-
cosets. Such typical moves are always part of a proof and bring to light the
intentional components in a proof: they have no independent logical justi-
fication other than serving the purpose of constructing bridges between the
initially given data, or between some intermediate steps, and subsequent
parts of the argument. But the bridges are conceptual, not deductive in
the sense of logic. In the example of Euclid's proof, the initial data are the
given primes Pi, pa, ..., pn. We construct the 'bridge' by considering the
number pip?.. .pn + 1; and only then argue that this number is either a
prime or divisible by a prime distinct from any of the pi. In the proof of
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Lagrange's theorem, the decomposition into cosets is a construction with
the purpose to relate the number of elements in a group with the number
of elements in a subgroup. Such constructions are, as already mentioned,
transferable 'technologies' to other proofs. Whereas Euclid could still list a
finite number of postulates upon which his constructions are based, we are
not any more in a position to set forth such a list: in general, constructions
in the course of a proof are creative moves ab initio. Once more we see
how misleading the Euclidean model can be in the epistemology of mathe-
matics. To return to the Hellegouarch-Frey curve (E), needless to say that
it does not suffice just to write down the elliptic curve (E) with a, b and
p as parameters coming from (F). The crux is to show that (E) has cer-
tain properties, namely, that it is a semistable non-modular elliptic curve.
The argument turned out to be so intricate, with numerous intermediate
constructions and links to be established, that Frey had to leave parts of
the proof to be completed by experts in the theory of modular curves—a
challenge met by Ribet [1990].

Fermat's Last Theorem is a statement about natural numbers, a sys-
tem considered to be situated at the very bottom of the mathematical
hierarchy—one recalls Kronecker's famous aphorism.31 On the other hand,
the proof of FLT by Andrew Wiles via the Shimura-Taniyama conjecture
brings into play some of the most advanced and intricate mathematical
theories, and hence is situated on the top of the mathematical hierarchy.
It is a most remarkable discovery that the assumed existence of relatively
prime integers a, b, c and a prime p > 3 such that ap + bP = c? contradicts
the statement that every semistable elliptic curve over Q is modular. This
link was revealed through 'a marvellous proof—but not the one Pierre de
Fermat thought he had found! Could the development of mathematics be
conceivable without proofs, the generators and very carriers of mathema-
tical knowledge? But there still remains the question of how secure the
carriers are. This will be our next concern.

The Reliability of Mathematical Knowledge
Consider the construction of a skyscraper. In order to secure the stability of
the edifice, it has to be seated on solid foundations and erected stagewise,
level after level, from the bottom to the top. Call the model of such a
structural stability and reliability skyscraper grounding.

The construction of a spaceship, on the other hand, is rather differ-
ent. It is fabricated out of numerous components, each component being
separately manufactured and tested for correct functioning and reliability.
The spaceship as a whole is an assemblage of the individual components,

31 'Die ganzen Zahlen hat der Hebe Gott gemacht, alles andere ist Menschenwerk.' (The
whole numbers were made by the good Lord, all the rest is works of humans.) Reported
by H. Weber in Math. Ann. 43 (1893), p. 19.
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constructed under the guidance of system engineers to insure that all the
components function coherently in unison. Call the model of the resulting
structural stability and reliability systemic cohesiveness.

Formalised mathematical theories would, par excellence, possess skyscra-
per grounding provided that the underlying axioms are consistent. Thus,
it is paramount for such grounding to prove the consistency of the ax-
ioms. This is indeed what Hilbert proposed first for axiomatic theories in
his famous 1900 address in Paris as Problem Number 2.32 With the sub-
sequent developments in mathematical logic, the concept of a formalised
theory crystallised (that is, an axiomatic theory in which also the logical
machinery is axiomatised), and Hilbert's Problem Number 2 received its
ultimate formulation in Hilbert's program, with the tacit subsidiary as-
sumption that every mathematical proof can be converted into a formal
derivation in a suitable formal system (Hilbert's Thesis). In view of the
known fate of the Hilbert program as originally conceived, and yet with
the still persistent .belief in Hilbert's Thesis, one can legitimately ask what
could be gained epistemologically even if complete formalisation of every
part of mathematics were always possible or feasible. Concerning the ac-
tual versus the fictitious gains from formalisation and the mechanisation of
reasoning, Kreisel [1985], p. 145, reminds us:

Certainly, if one is operating on masses of meaningless symbols as one says,
then the possibility of formalisation or mechanisation is a pretty obvious pre-
requisite for precision. But it would be odd, so to speak illogical, to conclude
from this that the reliability of an argument is enhanced by ignoring everything
one knows about the subject matter, and by treating it as a manipulation of
meaningless symbols! In fact, the practically absolutely essential method of
cross checks, comparing steps in an argument with one's background knowl-
edge or reinterpreting formulas (in Hilbert's terms: by using 'impure' meth-
ods), gives new meaning to the argument. (Italics in original)

With so many cracks in logidst foundationalism, skyscraper grounding of
mathematical knowledge has lost its credentials. Are we then obliged to
surmise that mathematical theories are just conjectural, awaiting (or dread-
ing) an empirical Mill to grind out a falsifier and put all to nil? Is, after
the brilliant proof by Andrew Wiles, the Shimura-Taniyama conjecture still
conjectural? Certainly, errors can creep in, to be duly corrected. Though
no mathematical theory has ever been refuted—what could ever be a po-
tential falsifier of, say, the theory of modular curves?—the mathematical
community does provide selectors on the social level, cross-checking for

32 In the words of Hilbert [1900]:
.. .1 wish to designate the following as the most important among the numerous

questions which can be asked with respect to the axioms: To prove that they are not
contradictor]/, that is, that a finite number of logical steps based upon them can never
lead to a contradictory result. (Italics in original)
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mistakes and weeding out errors and unfruitful approaches.33 Nor are we
to forget that due to shifts in interests, an inevasible process of fossilisation
or eventual death may befall any mathematical theory, as Fisher [1966]
has documented in the case of the death of invariant theory. (But a referee
pointed out that invariant theory has been resuscitated due to developments
in chaotology.)

As skyscraper grounding of mathematics is unattainable and Popperian
fallibilism founders under the weight of the cumulative stability of math-
ematical knowledge—no phlogiston-like case histories ever known—let us
see why systemic cohesiveness is a more viable model for the reliability of
mathematical knowledge.

In discussing the nature of proofs, I have particularly stressed their epis-
temic function in generating conceptual innovations, establishing contextual
links and as methodologies for solving problems. These aspects are often
neglected for failure to distinguish between proofs and derivations. None of
what has been said so far is intended to neglect the logical components of
proofs: indeed, these components are the nuts and bolts for holding together
the conceptual framework engendered by the methodological components of
proofs.

Some proofs, in particular those in which symbol manipulations play
a central role, come close to formal derivations.34 But in general, the
logical structure of a proof differs substantially from a derivation. One of
the salient features of a logical deduction in the course of a proof is that
the deduction depends on an understanding and on prior assimilation of
the meanings of the concepts from which certain properties are to follow
logically. It won't do to say that in practice this is just a matter of using
the definitions of the concepts in the course of a proof; for we are back at
the issue of grasping the meaning of the definition and of using it 'logically'
on the basis of that understanding. Anybody who has taught mathematics
knows that even in a graduate course or research seminar, writing on the
board a formal definition without detailed explanations of the intended
meaning is a sure way to block comprehension. And let it be added that
we are still in the dark on how consensus is reached on correct logical

3 3 De Millo, Lip ton and Perlis |1979], p. 272, put it succinctly: ' . . . insofar as it is success-
ful, mathematics is a social, informal, intuitive, organic, human process, a community
project'. And further down: 'There is simply no way to describe the history of math-
ematical ideas without describing the successive social process at work in proofs. The
point is not that mathematicians make mistakes; that goes without saying. The point
is that mathematicians' errors are corrected, not by formal symbolic logic, but by other
mathematicians. '

3 4 Notice however: though it takes, for example, just three simple lines to prove that a
left identity of a group (whose existence is postulated) is also a right identity, and hence
is unique, a formal derivation of this result in a Hilbert-style quantification system takes
at least 15 lines (and lots of explaining, as I know from experience in teaching logic).
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inferences in meaning-dependent informal deductions.35

Consider once more Lagrange's theorem, as discussed in Example 2
above. Let us analyse the proof from the point of view of systemic co-
hesiveness: the spaceship model. At the outset, there was a problem: is
there any relationship between the number of elements of a finite group
and the number of elements of a subgroup? The solution of the problem
calls first for methodological moves: the invention or the application of the
concept of right or left cosets, and the idea of decomposing a group with
respect to cosets. The proof strategy (the systemic plan) now requires three
preliminary steps—the 'fabrication' of reliable components. In Step (1) one
has to prove disjointness of the cosets, which amounts to showing that for
every X and Y in Q,

~>(HX n -HY = 0) —» (VZ)(Z € MX <-> Z e

The argument is straightforward, and it is easy to isolate the logical part
from the technical part which uses the group axioms. Once Claim (1) is
justified, we put it on the shelf as a certified, reliable component. We do
the same with Claim (2) and Claim (3). I won't elaborate the details but
notice that in establishing Claim (2), we have to go into our 'storehouse'
and use the certified 'machinery' for bijection as a valid rendering of the
intuitive notion of'same number of elements'. For Claim (3) we have to pick
from the 'storehouse' the 'machinery' of mathematical induction and other
arithmetic tools. Once the three claims have been established with the aid
of certified tools taken from the 'storehouse', they can be added to the shelf
as certified reliable components. Now we can use these components safely
and fit them together with a clinching argument to get the final result: the
order of a subgroup divides the order of the whole group.

In general, from the perspective of systemic cohesiveness, in construct-
ing a proof we avail ourselves of constituents whose rehability has already
been tested, parts of existing mathematical knowledge whose coherence re-
sults from previous proofs. Thanks to the logical components of proofs,
the outcome of the new proof can now be safely added qua warranted
assertions to the fabric of mathematical knowledge. Rather than view-
ing mathematics as well founded—in the technical sense of the term, in
the manner of skyscraper groundedness, the model of systemic cohesive-
ness views mathematical knowledge cohesively strung together like a multi-
dimensional Mobius band. To recapitulate, the function of the logical com-
ponent of proofs is to guarantee and preserve the coherence of the whole
system. Individual mathematicians graft the results of their Fesearch to
the body of existing mathematics. But beware of an infectious or defective

35 Promising avenues of research are in sight from work in cognitive science (see Johnson-
Laird and Byrne |1991|).
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graft: the collective immune system of the mathematical community will
sooner or later detect the pathogen—and we are not bereft of killer cells
ready to pounce!

Let us look again at the Hilbert Bridge. It spans two realms: on one
side of the bridge is the formal realm of syntactic objects; on the other
side is the realm of informal mathematical discourse. Many notions re-
ceive a sharper delineation under the above division into two realms by
considering them as occurring in pairs. We have already considered the
pair (derivation, proof), with derivations belonging to the formal realm
and proofs to the informal realm. Another important distinction, encap-
sulated in the pair (consistency, coherence), emerges from the preceding
discussion, where consistency is attributable to formalised theories and co-
herence to informal ones. As has already been stressed, a characteristic
feature of the formal realm is that metalogical concepts—such as deriva-
tion and consistency—can be given precise technical definitions. But by
their very nature, metatheoretical notions pertaining to the informal realm,
such as proof and coherence, can not be defined technically: they can only
be explicated, exemplified, and conveyed in the manner in which mean-
ings are communicated, understood and assimilated (cf. Thomas [1991]).
Skyscraper groundedness hinges on Hilbert's Thesis, and to be credible,
requires consistency proofs of every formalised theory. As we now know,
such 'grounding', paradoxically, can only be done from above. Rather than
enlisting the aid of angels, systemic cohesiveness is earth-bound, and as a
model for the reliability of mathematical knowledge is sustained by philo-
sophical arguments. The endeavours of this section are intended to be
nothing more than a sketch of an epistemological program. But by sepa-
rating the two realms of the formal and informal, by seriously questioning
Hilbert's Thesis, and in rejecting skyscraper groundedness of mathematical
knowledge with its underlying assumption of the 'standard view', I hope
to encourage a debate which focuses on actual mathematical practice. Imre
Lakatos deserves all the credit for having pioneered in this task, though
his conclusion that ultimately all mathematical knowledge is conjectural
a ia Popper is unwarranted. Quite to the contrary, the history of mathe-
matics confirms and reconfirms that mathematical knowledge is cohesively
soldered thanks to the methodological and logical components of proofs.
Proofs as we know them are the heart of mathematics, the generators,
bearers, and guarantors (modulo collective verifications) of mathematical
knowledge. Still, over the last twenty years, various assertions have been
made to the contrary—mostly by influential science journalists—ranging
from the claim by Kolata [1976] that the secure notion of mathematical
proof is due for revision, and all the way to the provocative article by Hor-
gan [1993], proclaiming outright the 'death of proof and treating Andrew
Wiles's proof of Fermat's Last Theorem as a 'splendid anachronism'. Sci-
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ence journalists are not the only ones who have come up with provocative
statements. Thus, within the mathematical community, Zeilberger [1993]
has proclaimed the coming of the age of a 'semi-rigorous mathematical cul-
ture' and 'probably true theorems'.36 Let us look at some of the technical
developments which have spurred such claims.

Probabilistic Algorithms: A Source of Misunderstanding
Probabilistic algorithms, whether they are conceived for primality testing
or for spot-checking formal derivations and computer programs, are con-
structed and validated by the customary, rigorous mathematical proof tech-
niques and often draw upon deep and intricate mathematical theories. Such
algorithms are tools for probabilistic analyses, in the manner of industrial
quality control, which turn out to be appropriate for certain applications.37

Yet the very function and nature of probabilistic algorithms have frequently
been misinterpreted, particularly in popularised accounts, and their emer-
gence has been cited as 'evidence' that mathematicians were about to relax
their standard of proof and settle for 'probably true theorems', or forgo
rigour altogether.

Consider first primality testing. If one wants to determine whether an
integer n > 1 is a composite or prime number, the most direct method
consists of dividing n by each d, 1 < d < n. If no such d is a factor of n, it
follows that n is prime (by definition of prime number); otherwise, conclude
that n is composite. For large n, the number of steps in such a calculation
becomes prohibitive. At the turn of this century, it took Frank Cole 'three
years of Sundays', even with numerous shortcuts and use of tables, to show
that

267 - 1 = 193707721 x 761838257287

and conclude from it that 2s7 — 1 is not a Mersenne prime. (The interest
in primes of the form 2" - 1 goes back to Euclid.) Gauss, in his Dis-
quisitiones Arithmeticae proposed in Sect. 6, §329, the problem of finding
efficient methods for primality testing and offered some of his own. Number-
theoretical interests apart, large prime numbers are currently used for the
construction of secure public-key cryptosystems and pseudorandom gener-
ators. Such practical applications require computationally efficient algo-
rithms for primality testing. (The book by Kranakis [1986] summarises
the main techniques in this domain.) Since cryptosystems operate with
probabilistic margins of security, it is obviously in line with the intended
applications to allow for primality tests with a trade-off between computa-
tional ease and a small margin of possible errors in identifying very large

36 For rebuttals, see Andrews |1994], Krantz [1994), and Thurston [1994J.
37 In industrial quality control a sample is subjected to certain tests, and on the ba-
sts of statistical methods one estimates the probability that the manufacturing process
functions as expected within preset limits of allowable errors.
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prime numbers. Such tests, known as Monte-Carlo primality tests, were
first developed by Solovay and Strassen [1977] and by Rabin [1976]. Let
me describe Rabin's test, following Rabin [1980].

Let n > 1 be an integer. Call b a witness for the compositeness of n if:
(i) 1 < b < n;
(ii) (a) 671"1 £ 1 (mod n), QL

(b) there exists k such that (n — l)/2fc = m is integral, and the
greatest common divisor of bm — 1 and n is > 1 and < n.

Clearly, if n is a prime number, no witness for the compositeness of n exists:
(ii)(a) cannot hold because for every primep and 1 < x < p, xp~l = 1 (mod
p) by Fermat's little theorem; condition (ii)(b) cannot hold either because
it affirms the existence of a proper divisor of n. Given n and 1 < b < n, it
is computationally easy to determine whether b is a witness for n. (Precise
bounds for the number of steps are given by Rabin.) The crux of the
whole method is that if n is composite then witnesses abound. Indeed,
Rabin proved (Th. 1) that if n is a composite integer > 4, the number of
witnesses for n is at least | (n — 1).

Consider now the following algorithm for testing an integer n > 4: pick k
numbers at random between 0 and n, say 0 < b\,b?,...,bk <n. Test in turn
each bi. If any is a witness, declare that n is composite; if none is a witness,
declare that n is a prime. (Since Rabin's algorithm uses randomisation
within the computation—just like the Solovay-Strassen algorithm—such
algorithms are referred to as probabilistic algorithms.)

How reliable is Rabin's primality test? If n is a prime number, we saw
that no witness exists, hence the algorithm gives the correct answer (barring
computational errors). But what happens if n is actually composite? It
could happen that just no witness occurs among the k test numbers 61,. . . ,
b/c • which were chosen at random between 0 and n, hence the algorithm
incorrectly declares n to be prime. But given the frequency of witnesses
for composite numbers, Rabin proved (Th. 2) that the probability of such
an error is smaller than l/22fc. Thus, for instance, if 50 numbers 61, 02,. •.,
650 are chosen at random, the probability that the algorithm declares an
actual composite number to be prime is at most 1/2100, a very small number
indeed. Now Rabin ([1980], p. 129) explicitly warns that

this last statement does not mean that an integer n asserted as prime by use
of 50 random numbers is prime with probability at least 1 — 1/2100 . Such an
interpretation is nonsensical since n is either prime or not.

The probabilistic statement refers to the reliability of the algorithm as a
function of the number of test cases. In principle, one can always test
deterministically whether an integer is prime or composite; it just happens
that for certain applications, such as secure encrypting—a probabilistic
problem to begin with—Monte-Carlo methods are well suited. Clearly,
such a technical result is devoid of epistemological implications. Yet some
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saw in it a major shift in mathematicians' criteria of proof.38 Further
extrapolations were quick to come. De Milo, Lipton and Perlis ([1979],
p. 273), describe (without subcribing to) the probabilist view—a radical
form of fallibilism—in the following words:

The probabilists argue that since any very long proof can at best be viewed
as probably correct, why not state theorems probabilistically and give proba-
bilistic proofs?

Let us see where this leads to. I assume that the probabilist envisions that
numerical probabilities be assigned to the 'truth' and 'proof value' of theo-
rems according to some workable scheme, else the whole venture just rests
on empty verbiage. Now suppose I prove a theorem T 'probabilistically' and
wish to assign a numerical probability to the validity of T. In the course
of my proof, say I have used known theorems 6\, #2, •. •, &n with unequal
weights, where each 6i in turn was proven probabilistically on the basis of
theorems T<I, . . . , Tin, each of which has a certain probability of validity,
and so on. How could one extract all these probabilities as the proof tree is
traced further and further back, in order to calculate the conditional prob-
ability that theorem T is 'true'? And what if our theorems of probability
theory are themselves only 'true' with given probabilities, how is all this
going to be taken into account and according to what procedure and with
what degree of confidence? Even our miraculous PYTHIAGORA would
throw her arms up in despair at the prospects of catering to a probabilist!

Let me return to the symposium paper of Rabin [1976] in which he intro-
duced the concept of a probabilistic algorithm. In the concluding remarks,
Rabin suggested that probabilistic algorithms be developed for verifying
the correctness of computer programs.39 Since then much important work
has been done in developing methodologies for program verifications. As
programs were also developed for generating formal derivations—known
as computer-assisted proofs—it was natural to extend these techniques to
verifications of formal derivations. These new algorithms test random sam-
ples of a derivation or program, just as Rabin's primality test operates on
random samples, but the underlying mathematics is much more intricate.
One of the recent pioneering papers in this direction by Arora and Safra
[1992] is entitled 'Probabilistic checking of proofs; A new characterization

3 8 Reporting in Science on the Symposium on New Directions and Recent Results in
Algorithms and Complexity, held a t Carnegie-Mellon University in April 1976, where
Rabin presented his paper, Kolata [1976] gave her report the spectacular title 'Math-
ematical Proof: The Genesis of Reasonable Doubt ' , and concluded with these words:
'And mathematicians may have to revise their notion of what constitutes strong enough
evidence to believe a statement to be t rue ' . Obviously, something is due for revision,
but it is not mathematicians ' notion of proof!
3 9 Strictly speaking, correctness of programs cannot be verified algorithmically because
even the halting problem is recursively unsolvable. The intended meaning is verification
of the correctness of all instances of a computation, but 1 shall not insist in the sequel
on such technicalities.
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of NP'. For the specialist, there is no risk of confusion in the use of the
word 'proofs' in the title: clearly, the paper is about formal computations
and their complexity classification. But some can and have taken this
type of work as a methodology for probabilistically verifying mainstream
mathematical proofs, confounding proofs with formal derivations. And this
indeed happened with the work surveyed by Babai [1994] on transparent
proofs (read: transparent derivations). Intuitively, a formal derivation is
called transparent, or holographic, if it can be verified with large confi-
dence by a small number of spot-checks. The crux of the method consists
of first transforming a formal derivation into transparent format through
a sequence of encodings, ending in a collection of numerical tables which
represent the derivation. The resulting transparent format of the formal
derivation can then be tested for correctness through a constant number
of randomised spot-checks. (For details and precise technical formulations,
see Babai [1994].)

Can such algorithms be used to verify a standard mainstream mathemat-
ical proof? First, the proposed proof will have to be completely formalised,
because the automatic proof checker operates only on syntactical objects
appropriately encoded. I have already stressed in a previous section that
there is no proof, in the technical sense, of Hilbert's Thesis, i.e., the the-
sis that every informal mathematical proof can be completely formalised.
This is an article of faith, and the number of believers in it is constantly
dwindling. And even if such a complete formalisation were in principle pos-
sible, who will do it and who will guarantee that the formalisation has been
carried out correctly, before being fed into the computer for computer ver-
ification? Let us ignore for a moment all these impediments, and suppose
that we have such a formalisation of a significant standard mathematical
proof which we wish to check for correctness by the algorithms discussed
by Babai (op. cit.). In addition to loading the computer with the formal
derivation, suitably expressed, one also has to load the machine with quite
an appendix, every item of which must be completely formalised. As to the
size of such an appendix, Babai ([1994], p. 33, footnote 2) writes (though
just in a footnote):

... theorem-candidates [for computer verification] will tend to be very long:
they will have to incorporate the definitions, basic concepts, notation, and
assumptions of the given area (e.g., a few volumes of Bourbaki); furthermore,
they should include general axiom schemes of mathematics (say, ZF), the ax-
ioms and inference rules of logic, procedures to implement logic, etc.

When all this is done—hoping that Hilbert's Bridge did not collapse
under the load of what a drove of mules had to lug across—the happy
moment arrives: we hit the return key of the computer and wait for the
verdict. When the computer halts, the final verdict appears on the screen:
'accepted', or, lnot accepted', as the case may be. Since the algorithm is
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probabilistic, the program also calculates the probability that the algorithm
did not err in its verdict (to be distinguished from the probability that
the verdict is correct). And where does all this lead to? Back to the
myth of PYTHIAGORA, though of a subtler sort. It is a myth because
of the irrealistic assumptions which we have already enumerated plus the
assumptions in the just quoted passage from Babai. No, this is not the way
to verify standard proofs with all their semantic elements. Reliability does
not come from first formalising all our mathematical books and papers and
then feeding all together with a formalised version of a proof-candidate to
a computer for a probabilistic verification in order to yield a 'probably true
theorem', whatever that could mean. As Thurston ([1994b], p. 170) writes:

Our system is quite good at producing reliable theorems that can be solidly
backed up. It's just that the reliability does not primarily come from mathe-
maticians formally checking formal arguments; it comes from mathematicians
thinking carefully and critically about mathematical ideas.

And again (in [1994a]):
... mathematical truth and reliability come about through the very human
process of people thinking clearly and sharing ideas, criticizing one another
and independently checking things out.
While the work reported by Babai is devoid of epistemological conse-

quences concerning proofs, it does have far reaching consequences for com-
puter science. Its major significance concerns the computer intractability
of approximate solutions of a wide range of discrete optimisation problems,
as the title of Babai [1994] already indicates. Paradoxically, it is just such
negative results, like proofs of mechanical undecidability in logic, which
doom PYTHIAGORA to the realm of a myth—a myth which happens to
be quite pernicious if not seen as such.

Mathematics is a collective art: the social process of reciprocal cross-
checks seems to be the only way to weed out errors and guarantee the
overall coherence and stability of mathematical knowledge. 'Mathematics
is indeed done in a social context,' writes Thurston [1994a], 'but the social
process is not something that makes it less objective or true: rather the
social process enhances the reliability of mathematics, through important
checks and balances.' (Italics in original) We eschew the pitfalls of social
relativism because there are objective criteria for judging the correctness
of an argument. An individual mathematician may overlook or make an
unwarranted assertion, but consensus is eventually reached once the error
is pointed out. Logical reasoning is not at the whim of culture: biological
evolution has endowed us with a mental apparatus adequate for judging the
soundness of a deduction (see Rav [1989; 1993]). How else could we judge
whether the basic rules of logic are sound? Certainly not by consulting
rules of logic or having a computer 'tell' us!

To conclude, I have endeavoured to show that mathematical proofs are a
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cognitive and epistemic entity sui generis: the methodological components
of proofs generate, catalyse and systematise mathematical knowledge, while
the logical components endow mathematics with systemic cohesiveness and
logical coherence.40
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ABSTRACT. Ordinary mathematical proofs—to be distinguished from formal deri-
vations—are the locus of mathematical knowledge. Their epistemic content goes
way beyond what is summarised in the form of theorems. Objections are raised
against the formalist thesis that every mainstream informal proof can be for-
malised in some first-order formal system. Foundationalism is at the heart of
Hilbert's program and calls for methods of formal logic to prove consistency. On
the other hand, 'systemic cohesiveness', as proposed here, seeks to explicate why
mathematical knowledge is coherent (in an informal sense) and places the problem
of reliability within the province of the philosophy of mathematics.


