
Assembly Programming for the

Chris Patuzzo



About me

London Computation Club

Software Developer

Hard search problems



This talk

How to get started

Basics of CPU architecture

Solving Hamiltonian path



By the end

Access to a powerful tool

Know more about your computer

Where to go next



Access to a powerful tool



Access to a powerful tool

216,000,000 iterations/second





What is this?



“System on a chip”

CPU

GPU “Neural Engine”

“Secure Enclave”

Memory



CPU

GPU “Neural Engine”

“Secure Enclave”

Memory

“System on a chip”



CPU

Runs ARM64 (v8.5-A)

RISC architecture

Low power, less heat

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools



CPU

4 “Firestorm” cores

4 “Icestorm” cores

(different speeds / cache)



What is cache?

Core 1

Level 1

Level 2

RAM

SSD



What is cache?

Core 1

Level 1

Level 2

RAM

SSD

~3 cycles

~20

~200

~10,000



What is cache?

Core 1

Level 1

Level 2

RAM

SSD

128KB

12MB

16GB

1TB



Registers

Core 1

x0 x1 x2 …
32 registers (1 cycle)

64 bits each

Some are specialx31…



Load Store Architecture

Load from memory

Calculate something

Store into memory





x0 = *x5



x1 = 12345



x0 = x0 + x1



*x5 = x0



Service Calls

Supervising process

Ask it to do something

e.g. print, exit





boilerplate}



supervisor calls



print



stdout



address of the string



length of the string



exit



exit status



Assemble and Link





Instructions

32 bits wide

RegisterRegisterRegister Immediate

Value

Operation

(some bits omitted)



x0x0x1add

000000000010000111 00

(destination)

(some bits omitted)



versus.



RegisterRegisterRegister Immediate

Value

Operation



What next?

Branching?

Logical operations?

Memory operations?

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools


Hamiltonian path



A B

C

D

E

F



A B

C

D

E

F



A B

C

D

E

F



A B

C

D

E

F



A B

C

D

E

F



A B

C

D

E

F



A B

C

D

E

F



A B

C

D

E

F



Assembly



How to signal if a path exists?



How to signal if a path exists?

Exit status (0 or 1)



exit status



How to store the “visited” set?



x0 …

How to store the “visited” set?



x0 …

How to store the “visited” set?

1 cycle



1 1 0 1 0 0

A B C D E F

0 1 2 3 4 5

How to store the “visited” set?

x0 …

…



clear at the start



mark D as visited



A B C D E F

0 1 2 3 4 5

mark D as visited



(flips the bit back again)

mark D as unvisited



How to visit a node?



How to visit a node?

Branch to a subroutine





The “visit_a” subroutine



“branch link”



What is “branch link” ?

Moves the program counter

Sets the x30 register



Return to the address in x30



How to branch conditionally?

Multiple different ways





test if a bit is zero



index 3



Problem: doesn’t set x30





test if non-zero



skip the next line



sets x30



How to check if we found a path?

The register is ‘111111’





Compare with ‘111111’



Branch if equal



Putting it together





We haven’t visited any nodes yet



Try from every possible node

(do a depth-first search)



Exit 1 if no path was found



Branch here if we find a path



visit_a





Mark A as visited: 20



Skip b if already visited
(index 1)



A B

C

D

E

F



Check if all nodes visited



Mark A as unvisited: 20



Repeat for other nodes





Mark B as visited: 21



Visit all the

nodes from B



A B

C

D

E

F



And that’s it!



And that’s it!

Well, not quite!



And that’s it!

Well, not quite!

There’s a problem



visit_a
visit_b

visit_d



visit_a
visit_b

visit_d

call stack



visit_a
visit_b

visit_d

sets x30
sets x30



visit_a
visit_b

visit_d
return



visit_a
visit_b

visit_d

return



visit_a
visit_b

visit_d

return



We need a stack!



visit_a
visit_b

visit_d

call stack



How the stack works

Stored in memory

Stack pointer (sp) register

Address moves down



sp
-16
-32
-48
-64
-80



+16
sp

-16
-32
-48
-64

16 bytes



+32
+16

sp
-16
-32
-48

16 bytes
16 bytes





Push x30



Pop x30



Code from before



And that’s it!

(really)



Demo

https://github.com/tuzz/assembly/blob/main/src/hamiltonian.s

https://github.com/tuzz/assembly/blob/main/src/hamiltonian.s


A B

C

D

E

F



A B

C

D

E

F



By the end

Access to a powerful tool

Know more about your computer

Where to go next



Useful resources

https://modexp.wordpress.com/2018/10/30/arm64-assembly

https://www.youtube.com/watch?v=GBRdzaAxHB8

https://www.amazon.co.uk/dp/1484258800

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

https://modexp.wordpress.com/2018/10/30/arm64-assembly
https://www.youtube.com/watch?v=GBRdzaAxHB8
https://www.amazon.co.uk/dp/1484258800
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools


Thanks!

@chrispatuzzo

https://twitter.com/chrispatuzzo





