« Pilemma Languages & Moral Codes "

(Photo by lucas Jackson, taskeless annotations my our)

Il Full of likely errors and mistalles, and not very well researched

This is you \bigvee \bigcirc

ON NO. What should I do? Jow should I even Mink about the problem??

ON N0.What should I do? should I HOW even Mink about The problem??

CLEARLY, T need a really HUNGY (Turing-complete?) language to express the problem

ON NO! What should I do? How should I even Mink about The problem?? //

CLEARLY, I need a really HUNGY (Turing-complete?) language to expless the problem.... ... and a compiler to solve (deerde) it.

Dilemma Languages
Moral Codes
Crazy edge cases!

A "Dilemma Language" expresses possible ethical dilemmas.

A "Dilemma Language" expresses possible ethical dilemmas. example: Rail Car Problems (in BNF)

decide ::=
$$-A = 1 - A = 1$$

consequence ::= $-A = 1$ consequence consequence
 RCP ::= $decide RCP = 1$ consequence 1 consequence RCP

A "Dilemma Language" expresses possible ethical dilemmas.

some examples of Rail Car Problems:

A "moral code" is a compiler from the dilemma language, to the dilema language.

A "moral code" is a compiler from the dilemma language, to the dilema language.

 $vhlihvian \left[RCP \right] = dude$

little more complex.

Put random

$$vhibuan \left[RCP \right] = context grammar
 $C = decide \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix} | consequence C \| with which to
viable the decision
 $k \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix} = decide \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix} | shifty pseudo-BNF
decide \begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix} = decide \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix} | equivalence reliation on
decisions$$$$

I guess that is cool or whatever but how do I deude which moral code to use?

For moral code C over dilemma longuage
$$\mathcal{I}$$
:
expected # deaths = $\arg\{\operatorname{num-deaths}(\mathfrak{C}[\omega]) \mid \omega \in \mathcal{I}\}$
expected lives saved = $\arg\{\operatorname{num-deaths}(\mathfrak{C}[\omega]) \mid \omega \in \mathcal{I}\}$
 \mathscr{I} where \mathfrak{C}^{c} just makes any devision except for \mathfrak{C}
expected people killed
who would not have = \mathscr{I} ... not sure how to calculate
been killed had you Mis in a logically (exconoble
done nothing Manner...

that seems reasonable but...

that seems reasonable but...

Infinite trees

Infinite Consequence

we could extend Z...

CONC	LUSION
Dilemma languages -D	
Moral CodesD	
How can we even con	npare codes over ∞-Lis?
Are there languages hav	Ing Measure > 0?
Maybe cool applications	to self-driving, etc.?