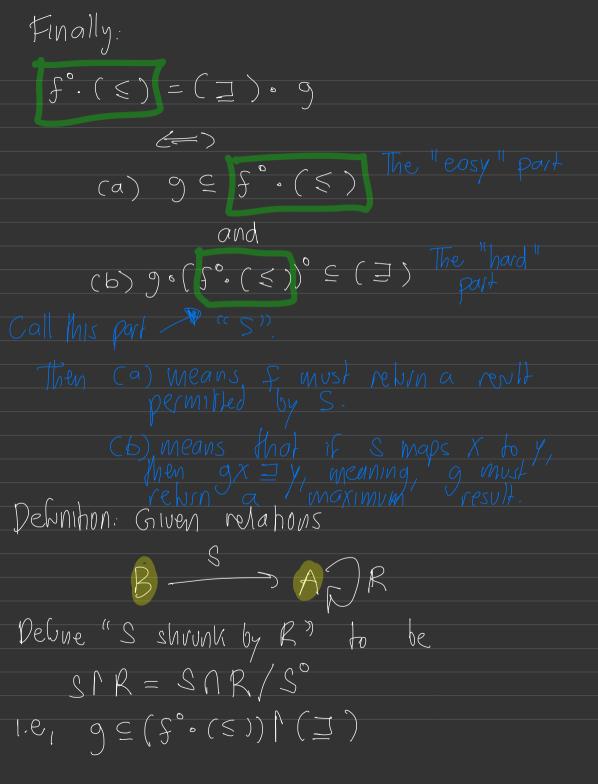
Boston Comp. Club Meeting #1 Programming from Gallois Connections

Max von Kippel

examples of Gallois connections (Z-conhnued) (a) division us multiplication for a, b, c>0 $\begin{array}{ccc} a \times c \leq b \iff a \leq b \div c \\ \downarrow \\ \varsigma & \end{array}$ (6) addition vs wolvaction atceber aeb-c f (c) length vs take $length z \leq N \land Z \subseteq \chi \iff Z \subseteq Jake(N, \chi)$ bet S be the vet of Ginike-length strings and N the vet of string-lengths. bet < be the normal order on M. let the the pretex order on S. Let Δ be the preorder on N×S defined by $(m, x) \Delta (m, y) \iff n \le m$ and $x \le y$. Let $f: S \rightarrow N \times S$ be the birthin $x \mapsto (\text{length } x, x)$ Let $g: N \times S \mapsto S$ be the birthin $(m, x) \mapsto x \models 0: n-1 \le returning$ the n-length $(m, x) \mapsto x \models 0: n-1 \le returning$ the n-length Then the hallors connection is (f, g) <, E). (vool, right; _____

(3) Consider the following hallors relation: $f(x) \leq y \leq z = x \equiv g(y)$ $(F(x), y) \in (\leq) \iff (x, g(y)) \in (\Box)$ express f, g as relations $(X, \gamma) \in S^{\circ} (\leq) \iff (X, \gamma) \in (\Xi)^{\circ} S$ X, γ are free variables, so express in point-free bran $S^{\circ} \cdot (\leq) \equiv (\Xi)^{\circ} S$ Split relational equality into two where statements $S^{\circ} \cdot (\leq) \leq (\Xi)^{\circ} S$ and $(\Xi)^{\circ} S \leq S^{\circ} \cdot (\leq)$ (I) (\mathbb{I}) Assume f and g are monopolic. Then: (II) => $\xi os \equiv is a preorder 3$ $g \in id \circ g \subseteq (\Xi) \circ g \leq g \subseteq f^{\circ} (\subseteq)$ =) E by Monotonicity of G $(\Xi) \cdot g \in (\Xi) \cdot f^{\circ} \cdot (\subseteq)$ $(\Xi) \cdot g \in S^{9}$. $(\leq) \cdot (\leq)$ $\Rightarrow \{ by association by blue \leq richny herebre (E) \cdot (\leq) \leq (\leq) \}$ $(\Xi) \cdot g \in S^{\circ} \cdot (\leq)$ Nole also that (I) = fr. (E) E (E) - g $(f^{\circ}(\underline{c}))^{\circ} \subseteq ((\underline{c}) \circ g)^{\circ} = g^{\circ}(\underline{c})$ $g \circ (f \circ (\subseteq)) \subseteq (\Box)$



Nch thol: SPR takes bEB to a E A AD a A C This is a very topological idea. We are shrinking S to only perform maps that are unmolested by R. IF R IS a MOXIMIZING WACHON, then we are shrinking s to only accept MOXIMAL solutions. (9) What can use to with if?

PROBLEM: Let A be a vet of tasks; For each $\alpha \in A$, let $g(\alpha)$ be the vet of fashs that must wait for α to complete before they may begin; bet spans: $A \rightarrow NT$ give the himespon of each task; for tasks. Given 9, the problem is to compute a binchion $F_{g}:$ spans \rightarrow schedule that gets all the tasks done as guickly as possible. let lazy; schedule -> spons compute for each task in the schedule its mox. enewhon time. So, Si s = Max hime fle schedule se lazyg(schedule) So, Si se lazyg(schedule) $\Rightarrow \quad f_g = ((\log y g)^{\circ}, (\geq)) \land (\leq)$ So what is the converse of (lazy g)?

(c) length vs take
length
$$z \in n$$
. A $z \in \chi \iff z \in take(n, x)$
let 4 be $\leq x \in z$.
(length $z, z > 4$ $(n, X) \iff z \in take(n, x)$
let $f(z) = Clength z, z >$
 $f(z) =$

V